玻璃试管, 玻璃试管 供应

  • 产品描述

CITOGLAS. 玻璃试管是由硼硅玻璃制成,耐高温和化学腐蚀,减少pH的变化和来自钠钙玻璃析出物的污染。所有试管,底部均一、抛光边、长度一致,且包装在方便的热缩膜中盒中。可以用于混匀、加热或者盛放少量化学试剂用于分析,也可以用于组织培养、血库,及其它实验室试验。


一次性玻璃试管

中性硼硅玻璃材质,适用于一般混匀和简单实验,也可以用于对PH敏感的样本,能承受中等温度加热(如水浴)。

符合ASTM E 890一次性玻璃培养管标准。

产品编号 规格尺寸(mm) 体积(ml)

壁厚(mm)

包装形式
84004-0101
84004-0104
84004-0107
84004-0110
84004-0113
84004-0116
84004-0119
84004-0719
84004-0122
Φ10×50
Φ10×75
Φ11×70
Φ12×75
Φ12×100
Φ13×100
Φ12×110
Φ12×120
Φ16×100
2.5
3.0
3.0
5.0
7.0
7.0
8.0
8.0
10.0
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.7

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒


可重复使用的玻璃试管

高硼硅玻璃材质,满足实验室日常需要,耐高温,包括煮沸样本,以及高品质的耐化学性

符合ASTM E 982实验室玻璃试管标准

中性硼硅玻璃试管

产品编号 规格尺寸(mm) 体积(ml)

壁厚(mm)

包装形式
84004-0102
84004-0105
84004-0108
84004-0111
84004-0114
84004-0117
84004-0120
84004-0720
84004-0125
84004-0127
84004-0129
84004-0123
84004-0131
84004-0133
84004-0135
84004-0139
84004-0137
Φ10×50
Φ10×75
Φ11×70
Φ12×75
Φ12×100
Φ13×100
Φ12×110
Φ12×120
Φ15×100
Φ15×125
Φ16×125
Φ16×100
Φ16×150
Φ16×160
Φ20×150
Φ18×150
Φ20×200
2.5
3.0
3.0
5.0
7.0
7.0
8.0
8.0
10.0
12.0
14
10
16
17
20
25
25
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
0.8-1.0
1.0
1.0
1.0
1.0-1.2
1.0-1.2
1.0-1.2

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒

100支/中盒, 10×100支/箱

250支/中盒, 4×250支/盒

100支/中盒, 6×100支/箱

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒

100支/中盒, 6×100支/箱

100支/中盒, 6×100支/箱

100支/中盒, 4×100支/箱

3.3高硼硅玻璃试管

产品编号 规格尺寸(mm) 体积(ml)

壁厚(mm)

包装形式
84004-0103
84004-0106
84004-0109
84004-0112
84004-0115
84004-0118
84004-0121
84004-0721
84004-0126
84004-0128
84004-0130
84004-0124
84004-0132
84004-0134
84004-0136
84004-0140
84004-0138
Φ10×50
Φ10×75
Φ11×70
Φ12×75
Φ12×100
Φ13×100
Φ12×110
Φ12×120
Φ15×100
Φ15×125
Φ16×125
Φ16×100
Φ16×150
Φ16×160
Φ20×150
Φ18×150
Φ20×200
2.5
3.0
3.0
5.0
7.0
7.0
8.0
8.0
10.0
12.0
14
10
16
17
20
25
25
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8-1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0-1.2

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 8×250支/盒

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒

100支/中盒, 10×100支/箱

250支/中盒, 4×250支/盒

100支/中盒, 6×100支/箱

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒

250支/中盒, 4×250支/盒

100支/中盒, 6×100支/箱

100支/中盒, 6×100支/箱

100支/中盒, 4×100支/箱

微量离心管,带安全锁扣, 微量离心管 带安全锁扣 供应

  • 产品描述

采用高质量的透明PP材料制成,特殊设计的安全锁扣使离心管盖和管身紧密贴合,避免在离心过程中和受到热应力时盖子意外打开,尤其适用于昂贵或危险样本等。离心管的薄膜型管盖易被刺穿,适用于有毒生物物质且不会产生气溶胶。

· 可单手操作

· 特殊的安全锁扣,确保完全防漏

· 薄膜型管盖易被刺穿

· 精确的模制刻度,便于确定容量

· 平盖,具磨砂书写面,方便样本标记

· 可承受最大离心力为15000xg

· 可承受温度范围为–86°C 到 121°C

产品编号 描述 包装形式
84610-1842

84610-1844

84610-1845

84610-1846

1.5mL, 本色, 锥形底, 模具刻度0.5-1.5mL, 不灭菌

1.5mL, 本色, 锥形底, 模具刻度0.5-1.5mL,  Gamma 灭菌

2.0mL, 本色, 圆底, 模具刻度0.5-2.0mL, 不灭菌

2.0mL, 本色, 圆底, 模具刻度0.5-2.0mL,  Gamma 灭菌

500只/拉链袋,10×500只/箱

500只/拉链袋,10×500只/箱

500只/拉链袋,10×500只/箱

500只/拉链袋,10×500只/箱

99-201-150,99-202-150-GE whatman 杭州双圈 定量滤纸15cm快速-定量滤纸

品牌 其他品牌 货号 99-201-150,99-202-150
供货周期 现货 应用领域 综合

双圈定量滤纸以表面光洁、本底纯净、过滤效果佳而著称。主要应用于精确定量分析实验和要求洁净环境与低干扰的设备、电子器件和实验条件。“GE whatman 杭州双圈 定量滤纸15cm快速”

GE whatman 杭州双圈 定量滤纸15cm快速

定量滤纸

双圈定量滤纸以表面光洁、本底纯净、过滤效果佳而著称。主要应用于精确定量分析实验和要求洁净环境与低干扰的设备、电子器件和实验条件。双圈品牌专门设计有三种不同流速的滤纸以满足不同应用:快速、中速和慢速。不同型号的滤纸其物理化学指标也各有不同,兼顾了过滤速度和颗粒截流效果,应用于食品分析、土壤分析、建筑业、矿产和钢铁业的无机分析。在制造过程中,通过严格的物理控制和清洗工艺,滤纸中绝大多数杂质被去除,煅烧后残留灰分极少,保障了精确的定量分析。

性能指标

级别 定量
(g/m2)
分离性能 滤水时间
(秒)
湿耐破度
(mm水柱)
灰分
(%)
应用
快速 80.0±4.0 氢氧化铁 ≤35 ≥120 ≤0.01 大颗粒或凝胶状沉淀物的过滤
中速 硫酸铅 >35~≤70 ≥140 科学研究中可以作为主要滤纸,用于土壤分析时从水相提取物分离
固形物质,工业中的常规过滤,水泥、泥土、金属成分比重分析
慢速 硫酸钡(热) >70~≤140 ≥180 食品分析、土壤分析、空气污染监测中的颗粒收集,也用于建筑业、
矿产和钢铁业的无机分析

GE whatman 杭州双圈 定量滤纸15cm快速

产品货号

99-201-150,99-202-150-GE whatman 杭州双圈 定量滤纸15cm快速-定量滤纸

是国内专业的实验过滤材料提供商,致力于将质量、可靠性和操作性突出的产品带给每一位客户。

烧杯,带手柄和大的倾倒口,模具刻度,PP材质 , 塑料烧杯 PP烧杯 模具烧杯 供应

  • 产品描述

符合ISO 7056实验室塑料器具-烧杯标准
锥形侧面设计,节省存储空间,适用于实验室大多数应用

· 良好的耐化学性,持久耐用,及可高温高压灭菌

· 符合人体工程学设计的把手易于搬运和倾倒

产品编号 容量(ml) 包装

84206-2152
84206-2171
84206-2181
84206-2182
84206-2183
84206-2191

250
500
1000
2000
3000
5000

4只/盒, 48只/箱

4只/盒, 48只/箱

2只/盒, 24只/箱

1只/盒, 12只/箱

1只/盒, 6只/箱

1只/盒, 4只/箱

Phos-tag™ 生物素

Phos-tag™ 生物素
Phos-tag™ Biotin

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ BiotinPhos-tag™ 生物素

无特异性磷酸化抗体时的最佳选择!

  Phos-tag™ Biotin是与生物素结合的Phos-tag™,可用于免疫印迹法检测磷酸化蛋白。Phos-tag™ Biotin BTL-104和BTL-105可灵敏检测PVDF膜上的磷酸化蛋白。



Phos-tag™ 生物素



优点、特色


  无辐射。

  无需PVDF膜的封闭处理。

  Phos-tag™ 的特异性结合与氨基酸种类、序列无关。

  可适用于免疫印迹和质谱分析等后续工作

   Phos-tag™ BTL母液可稳定保存至少6个月。

  实验流程与使用HRP标记抗体相类似


※BTL-104、BTL-105、BTL-111三者连接链(Linker)长度不一,但使用上基本相同。BTL-111灵敏度最高。



案例、应用


【使用例:在PVDF 膜上检测磷酸化蛋白】


Phos-tag™ 生物素


  转印在PVDF 膜上的磷酸化蛋白可精确检测到ng级水平,没有检测到相应的去磷酸化蛋白与非磷酸化蛋白的信号斑点。

  免疫印迹检测磷酸化蛋白——Phos-tag ™ 生物素。

  摘自Eiji Kinoshita ,et al., Mol.Cel.Proteomics (2006) 5: 749


【使用例:Phos-tag™ 生物素在检测蛋白激酶活性的微阵列(生物芯片)中的运用


  蛋白激酶是很多疾病诊断和药物筛选的靶标。近来有科研人员研发了一种检测胞内蛋白激酶活性的高灵敏度多肽微阵列。用微阵列点样机点样2nL体积的底物多肽溶液,使多肽固定在戊二醛预修饰的高氨基末端载玻片。

  当多肽经细胞裂解液磷酸化后,用荧光标记的抗phosphotyrosine(磷酸化酪氨酸)抗体检测酪氨酸激酶,或者用Phos-tag™ 生物素,接着用荧光标记的亲和素检测丝氨酸或者苏氨酸激酶。之后用自动微阵列扫描仪检测荧光信号。多肽微阵列系统包括简单的多肽固定,只需少量样品,具有高密度阵列。重要的是,检测细胞裂解液蛋白激酶活性的灵敏度高。

  因此多肽微阵列系统可用于高通量筛选细胞内激酶活性,可用于药物筛选和疾病诊断。

Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™Agarose)及质谱分析MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


Phos-tag™ 的基本结构:

Phos-tag™ 生物素

特点:

与-2价磷酸根离子的亲和性和选择性高于其它阴离子

在pH 5-8的生理环境下生成稳定的复合物

原理


Phos-tag™ 生物素

相关应用


Phos-tag™ 生物素

相关产品

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离: SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离: 预制胶中含有50μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测: 代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化: 通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析: 用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:http://phos-tag.jp

Phos-tag™ 生物素

Phos-tag 第5版说明书


Phos-tag™ 生物素

Phos-tag系列 ver 5

Phos-tag™ 生物素

Phos-tag生物素操作手册

Phos-tag™ 生物素

说明书


Q: BTL-104和BTL-111的区别?

A: BTL-104的溶解度更高,BTL-111的灵敏度更高。

 

Q: 检测灵敏度达到什么水平?

A: 可达到ng级别。需要使用化学发光试剂,比如ImmunoStar LD(Wako)。

 

Q: 使用该产品还需要别的试剂或则耗材吗?

A: 硝酸锌(Zn(NO3)2)溶液和亲和素标记的HRP((GE Healthcare Bio-Sciences:       RPN1231)。制备Phos-tag™生物素与亲和素标记的HRP偶联物时需要使用离心过  滤装置(NMWL = 30,000, Nanosep™ 30K, Pall Life Sciences).

 

Q: Phos-tag生物素使用的次数?

A: 主要决定于使用次数和使用量,以下实验次数仅作参考:

     BTL-104:130~1300次;

      BTL-111 1mM溶液:10~100次。

 

Q: 可测定磷酸化蛋白?

A: 根据条带的浓度,可进行半定量分析。

 

Q: 能够确定结合磷酸化基团的数目?

A: 不能。


Q: 能否剥除(strip)Phos-tag™生物素?

A: 可以。与含有62.5mM Tris-HCl(pH6.8),2%(w/v)SDS和0.1M 2-巯基乙醇溶液  混合后,震荡15分钟。用1×TBS-T洗涤3次,每次10分钟。

 

Q: 推荐使用哪种膜?

A: 建议使用PVDF膜。

 

Q: 使用Phos-tag™ 生物素是否需要封闭?

A: 不需要。封闭会降低检测灵敏度。

【参考文献】


·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.

References on Phos-tag™ Chemistry

  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

  • Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

  • Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

  •  Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

  • Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

  • Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture MoleculeAnalytical Chemistry77, 3979-3985 (2005), K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama

  • Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike

  • Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pHProteomics, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike

  • Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry360, 160-162 (2007), S. Yamada, H. Nakamura, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and Y. Shiro

  • Label-free kinase profiling using phosphate-affinity polyacrylamide gel electrophresisMolecular & Cellular Proteomics, 6, 356-366 (2007), E. Kinoshita-Kikuta, Y. Aoki, E. Kinoshita, and T. Koike

  • A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+.Phos-tag.)

  • Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag MoleculeJournal of Biomolecular Techniques18, 278-286 (2007), T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura

  • A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresisAnalytical Biochemistry378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate- affinity SDS-PAGEProteomics, 8, 2994-3003 (2008), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, S. Yamada, H. Nakamura, Y. Shiro, Y. Aoki, K. Okita, and T. Koike

  • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathwayNature Structural & Molecular Biology15, 1138-1146 (2008), M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge, and M. Takata

  • to Page top

  • Two-dimensional phosphate affinity gel electrophoresis for the analysis of phosphoprotein isotypes Electrophoresis30, 550-559 (2009), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, Y. Aoki, S. Ohie, Y. Mouri, and T. Koike

  • Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leavesBioscience, Biotechnology, and Biochemistry,73, 1293-300 (2009), T. Tanaka, G. Horiuchi, M. Matsuoka, K. Hirano, A. Tokumura, T. Koike, and K. Satouchi

  • A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptidesAnalytical Biochemistry388, 235-241, (2009), K. Takiyama, E. Kinoshita, E. Kinoshita-Kikuta, Y. Fujioka, Y. Kubo, and T. Koike

  • Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysatesAnalytical Biochemistry389, 83-85, (2009), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agaroseProteomics9, 4098- 4101 (2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Ujihara, and T. Koike

  • Separation and detection of large phosphoproteins using Phos-tag SDS-PAGENature Protocols4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

  • A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tagRapid Communications in Mass Spectrometry24, 1075-1084 (2010), J. Morishige, M. Urikura, H. Takagi, K. Hirano, T. Koike, T. Tanaka, and K. Satouchi

  • Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexesClinical Biochemistry43, 302-306 (2010), E. Kinoshita, E. Kinoshita-Kikuta, H. Nakashima, and T. Koike

  • The DNA-binding activity of mouse DNA methyltransferase 1 is ragulated phosphorylation with casein kinase 1σ/εBiochemical Journal427, 489-497 (2010), Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita


产品编号 产品名称 产品规格 产品等级 产品价格
301-93531 Phos-tag™ Biotin BTL-104
 Phos-tag 生物素
10mg
308-97201 Phos-tag™ Biotin BTL-111 1mM Aqueous Solution
 Phos-tag 生物素1mM水溶液
0.1mL

陶瓷坩埚, 除了底座和轮辋外,还有内外釉。各种容量以及低 供应

  • 产品描述

用于熔化,灰化或干燥样品的高温容器

·瓷质材料,带盖,带有环状手柄

·内外均采用玻璃,底座和边缘除外

·可承受高达1150℃的温度

·提供各种容量以及低,中,高形式


中型

产品编号

容积(ml

顶端直径(mm)

底部直径(mm)

高度(mm)

包装

84121-0005

84121-0010

84121-0015

84121-0018

84121-0020

84121-0025

84121-0030

84121-0040

84121-0050

84121-0070

84121-0100

84121-0150

84121-0200

84121-0300

84121-0400

5

10

15

18

20

25

30

40

50

70

100

150

200

300

400

25

30

35

37

38

40

42

48

53

58

63

77

82

90

100

16

20

21

22

22

23

24

26

30

32

34

39

41

43

45

21

28

30

31

32

36

41

42

46

57

59

63

70

78

100

540只/箱

540只/箱

540只/箱

540只/箱

540只/箱

360只/箱

360只/箱

270只/箱

192只/箱

96只/箱

96只/箱

96只/箱

96只/箱

80只/箱

60只/箱

低型

产品编号

容积(ml

顶端直径(mm)

底部直径(mm)

高度(mm)

包装

84120-0015

84120-0018

84120-0020

84120-0025

84120-0030

84120-0040

84120-0050

15

18

20

25

30

40

50

19

20

24

25

26

27

28

23

25

27

30

34

36

38

23

25

27

30

34

36

38

540只/箱

540只/箱

270只/箱

270只/箱

288只/箱

288只/箱

288只/箱

高型

产品编号

容积(ml

顶端直径(mm)

底部直径(mm)

高度(mm)

包装

84122-0015

84122-0018

84122-0020

84122-0025

84122-0030

84122-0040

84122-0050

15

18

20

25

30

40

50

32

34

36

38

40

42

43

20

21

22

23

25

27

28

34

36

38

40

46

54

58

540只/箱

540只/箱

540只/箱

540只/箱

480只/箱

240只/箱

240只/箱


6798-2502-GE Whatman Puradisc25 针头式滤器 GF/A-针头式过滤器

品牌 其他品牌 货号 6798-2502
供货周期 现货 应用领域 医疗/卫生,环保/水工业,综合

6798-2502 GE Whatman Puradisc25 针头式滤器 GF/A
Puradisc™ 针头式滤器具有yi流的质量的同时,又兼顾到产品的经济性。它可以快速有效的过滤样品,zui大过滤量为 100 mL。Puradisc 滤器由无色聚丙烯或聚碳酸酯材料制成,有标准进口和出口接头 ( 除非另有说明 )。有无菌包装、医疗级别包装可选,还有特殊长管出口,用于精确将

6798-2502 GE Whatman Puradisc25 针头式滤器  GF/A

Puradisc™ 针头式滤器具有yi流的质量的同时,又兼顾到产品的经济性。它可以快速有效的过滤样品,zui大过滤量为 100 mL。Puradisc 滤器由无色聚丙烯或聚碳酸酯材料制成,有标准进口和出口接头 ( 除非另有说明 )。有无菌包装、医疗级别包装可选,还有特殊长管出口,用于精确将样品分离到微型进样瓶,避免了空气阻塞作用。

特点和优点
• 采用优质外壳材料:无色聚丙烯 ( Puradisc FP 30 和Aqua 30采用聚碳酸酯外壳 )
• 标准进口和出口接头
• 提供无菌和医疗级别包装
• 提供带长管类型滤器 ( 选配 ) ,精确过滤样品到微型进样瓶中
• 提供丰富多样的 Whatman 滤膜和玻纤过滤介质
• 提供多种滤器尺寸可供选择 ( 4, 13, 25 或 30 mm ) ,样品损失zui小化
• 提供独立无菌包装,针对更严苛的要求
• 多种滤膜可供选择

6798-2502 GE Whatman Puradisc25 针头式滤器  GF/A

Puradisc 25
特点
• 25 mm 直径针头式滤器
• 过滤量高达 100 mL
• 样品吸附量低,保证zui大的样品回收量
• 可选玻璃微纤维
应用
• HPLC 水相样品制备
• 生物样品准备,如毛细电泳、层析、SPR等
• 缓冲液
• 盐溶液
• 组织培养基
• 灌洗液过滤
• 无菌#分离

6798-2502-GE Whatman Puradisc25 针头式滤器  GF/A-针头式过滤器

Nissui 05215 氯化钠多粘菌素肉汤培养基 Salt Polymyxin Broth 100g

Nissui 05215 氯化钠多粘菌素肉汤培养基 Salt Polymyxin Broth 100g
Nissui日水培养基代理
日水制药(NISSUI)官网
欢迎访问Nissui日水官网或者咨询我们获取更多产品信息。
货期:2-3周
Nissui 05215 氯化钠多粘菌素肉汤培养基 Salt Polymyxin Broth 100g

05006 SBG Broth Base “Nissui”
05002 EEM Broth “Nissui”
05009 Selenite Cystine Broth Base “Nissui”
05132 Tetrathionate Broth (TT) “Nissui”
05130 Rappaport-Vassiliadis Broth (RV) “Nissui”
05131 Buffered Peptone Water (BPW) “Nissui”
Enterobacteria Separation
05025 SSB Agar “Nissui”
05024 SSB Agar “Nissui”
05032 SS Agar with Sucrose “Nissui”
05033 SS Agar with Sucrose “Nissui”
05021 SS Agar “Nissui”
05020 SS Agar “Nissui”
05040 DHL Agar “Nissui”
05042 BTB Lactose Agar “Nissui”
05037 MacConkey Agar “Nissui”
05103 TSI Agar “Nissui”
05140 X-SAL Agar “Nissui”
05041 MLCB Agar “Nissui”
Enterobacteria Confirmation, Differentation and Identification
05104 LIM Agar “Nissui”
05106 SIM Agar “Nissui”
05148 DNA Agar “Nissui”
05111 SC Agar “Nissui”
05107 VP-MR Medium “Nissui”
05182 ONPG Disk “Nissui”
05180 Cytochrome Oxidase Test Strip “Nissui”
06626 ID Test EB-20 “Nissui”
06615 ID Test EB-20 “Nissui” EB Plate
06616 ID Test EB-20 “Nissui” EB Broth
06628 ID Test EB-20 “Nissui” EB Reagent
06673 ID Test EB-9 “Nissui”
06671 ID Test EB-9 “Nissui” EB9 Reagent
06608 Sterilized Oil Paraffin “Nissui”
08720 Quick ID GN “Nissui”
08721 Quick ID GN “Nissui” Reagent
Vibrio parahaemolyticus, cholera
05215 Salt Polymyxin Broth “Nissui”
05206 Alkaline Peptone Water “Nissui”
05201 Vibrio Agar “Nissui”
05208 PMT Agar Base “Nissui”
05204 Thiosulfate citrate bile Saccharose Agar “Nissui”
05135 X-VP Agar “Nissui”
Non-fermentative Gram-negative rod
05220 NAC Agar “Nissui”
05221 Cetrimide Agar “Nissui”
06629 ID Test NF-18 “Nissui”
06617 ID Test NF-18 “Nissui” NF Plate
06618 ID Test NF-18 “Nissui” NF Broth
06631 ID Test NF-18 “Nissui” NF Reagent
Staphylococci
05234 Staphylococcus Medium No 110 “Nissui”
05236 Mannitol Salt Agar “Nissui”
05246 PEA Agar “Nissui”
05238 Salt Egg Yolk Agar Base “Nissui”
06637 N-ID Test SP-18 “Nissui”
06613 N-ID Test SP-18 “Nissui” SP Plate
06614 N-ID Test SP-18 “Nissui” SP Broth
06638 N-ID Test SP-18 “Nissui” SP Reagent
Haemophilus / Neisseria
06635 ID Test HN-20 Rapid “Nissui”
06640 ID Test HN-20 Rapid “Nissui” HN Reagent
Anaerobes
05420 GAM Agar “Nissui”
05426 GAM Agar, Modified “Nissui”
05433 GAM Broth, Modified “Nissui”
05422 GAM Broth “Nissui”
05460 GAM Semisolid without Dextrose “Nissui”
05424 GAM Semisolid “Nissui”
05404 CW Agar Base without KM “Nissui”
05405 CW Agar Base with KM “Nissui”
05440 Bacteroides Agar “Nissui”
05441 FM Agar, Modified “Nissui”
05450 GAM Agar with GM “Nissui”
05430 BL Agar “Nissui”
05409 Clostridia Count Agar “Nissui”
Bacillus cereus
05282 NGKG Agar Base “Nissui”
Viable bacteria
05530 Sensitivity Disk Agar-N “Nissui”
05533 Mueller-Hinton Agar-N “Nissui”
05534 Sensitivity Test Broth “Nissui”
05503 Heart Infusion Agar “Nissui”
05505 Heart Infusion Broth “Nissui”
05507 Brain Heart Infusion Agar “Nissui”
05509 Brain Heart Infusion Broth “Nissui”
05514 Nutrient Agar “Nissui”
05511 Nutrient Broth “Nissui”
05516 Trypto-Soya Agar (SCD Agar) “Nissui”
05630 Trypto-Soya Broth (SCD Broth) “Nissui”
05528 Buffered Sodium Chloride Peptone Solution (pH70) “Nissui”
05522 Dorset Egg Medium “Nissui”
05527 CLED Agar “Nissui”
05601 TGC Medium, Fluid “Nissui”
Viable bacteria
05610 TGC Medium without Indicator, Liquid “Nissui”
05629 TGC Medium without Indicator, Fluid “Nissui”
05602 Dextrose Peptone Broth “Nissui”
05618 Standard Method Agar “Nissui”
05622 Plate Count Agar with BCP “Nissui”
05625 CVT Agar “Nissui”
Ecoli and Coliform
05634 Lactose Broth “Nissui”
05638 BGLB Broth “Nissui”
05648 EC Broth “Nissui”
05636 Desoxycholate Agar “Nissui”
05644 EMB Agar “Nissui”
05631 X-GAL Agar “Nissui”
05632 XM-G Agar “Nissui”
05607 Blue Light Broth “Nissui”
05591 EC-Blue 100P “Nissui”
05593 EC-Blue 100 “Nissui”
05613 EC-Blue 10 “Nissui”
06574 EC-Blue 100 Bottle Holder “Nissui”
06516 EC-Blue 10 “Nissui” Comparator
05617 EC-Blue 100 “Nissui” Comparator
06517 EC-Blue 100 “Nissui” MPN Plate
05643 MacConkey Sorbitol Agar “Nissui”
05679 EF Agar Base “Nissui”
05649 mEC Broth “Nissui”
Fungus
05701 Sabouraud Agar “Nissui”
05702 Corn Meal Agar “Nissui”
05680 AC Broth Base “Nissui”
05703 Candida GE Agar “Nissui”
05705 Czapek Dox Agar “Nissui”
05706 Malt Agar “Nissui”
05709 Potato Dextrose Agar “Nissui”
Vitamin
05800 Lactobacilli Culture Agar “Nissui”
05801 Lactobacilli Inoculum Broth “Nissui”
05802 B12 Culture Agar “Nissui”
05803 B12 Inoculum Broth “Nissui”
05819 B12 Assay Medium (Set) “Nissui”
05815 Pyridoxine Assay Medium “Nissui”
05816 Niacin Assay Medium “Nissui”
05814 Folic Acid Assay Medium “Nissui”
05817 Pantothenate Assay Medium “Nissui”
05818 Biotin Assay Medium “Nissui”
05835 Powdered Agar “Nissui”
Prepared Media
Tube Media
05169 Nissui Tube Triple Sugar Iron Agar
05170 Nissui Tube Sulfide Indole Motility Medium
05171 Nissui Tube Lysine Indole Motility Medium
Food Stamp
06053 Food Stamp “Nissui” Desoxycholate Agar (DESO)
06052 Food Stamp “Nissui” Desoxycholate Agar (DESO)
06764 Food Stamp “Nissui” X-GAL Agar (XGAL)
06763 Food Stamp “Nissui” X-GAL Agar (XGAL)
06051 Food Stamp “Nissui” Standard Method Agar (SMA)
06050 Food Stamp “Nissui” Standard Method Agar (SMA)
06776 Food Stamp “Nissui” XM-G Agar (XM-G)
06775 Food Stamp “Nissui” XM-G Agar (XM-G)
06055 Food Stamp “Nissui” TCBS Agar (TCBS)
06054 Food Stamp “Nissui” TCBS Agar (TCBS)
06057 Food Stamp “Nissui” TGSE Agar (TGSE)
06056 Food Stamp “Nissui” TGSE Agar (TGSE)
06751 Food Stamp “Nissui” MLCB Agar (MLCB)
06750 Food Stamp “Nissui” MLCB Agar (MLCB)
06753 Food Stamp “Nissui” Cereus Agar (CERE)
06752 Food Stamp “Nissui” Cereus Agar (CERE)
06757 Food Stamp “Nissui” X-SA Agar (X-SA)
06756 Food Stamp “Nissui” X-SA Agar (X-SA)
06064 Food Stamp “Nissui” Sabouraud Agar (SABO)
06063 Food Stamp “Nissui” Sabouraud Agar (SABO)
06755 Food Stamp “Nissui”
Potato dextrose Agar with Chloramphenicol (PDA)
06754 Food Stamp “Nissui”
Potato dextrose Agar with Chloramphenicol (PDA)
06231 Food Plate X “Nissui”
Compact Dry
06740 Compact Dry “Nissui” TC
06741 Compact Dry “Nissui” TC
06744 Compact Dry “Nissui” CF
06745 Compact Dry “Nissui” CF
06742 Compact Dry “Nissui” EC
06743 Compact Dry “Nissui” EC
06746 Compact Dry “Nissui” YM
06747 Compact Dry “Nissui” YM
06748 Compact Dry “Nissui” VP
06749 Compact Dry “Nissui” VP
06729 Compact Dry “Nissui” X-SA
06730 Compact Dry “Nissui” X-SA
06732 Compact Dry “Nissui” SL
06733 Compact Dry “Nissui” SL
06727 Compact Dry “Nissui” X-BC
06728 Compact Dry “Nissui” X-BC
06738 Easy Wiping Kit “Nissui”
01553 Sterilized Diluting Solution “Nissui” 9 mL × 4
01551 Sterilized Diluting Solution “Nissui” 90 mL
06737 Opener with Sterilized Diluting Solution “Nissui”
06598 Wiping Frame “Nissui” 100
06472 Sterilized Spoid “Nissui”
Clean Stamp
06781 Clean Stamp “Nissui” MSO Agar (MSO)
06780 Clean Stamp “Nissui” MSO Agar (MSO)
06785 Clean Stamp “Nissui” SCD Agar (SCD)
06784 Clean Stamp “Nissui” SCD Agar (SCD)
06787 Clean Stamp “Nissui”
SCD Agar with Lecithin, polysorbate 80 (SCDLP)
06786 Clean Stamp “Nissui”
SCD Agar with Lecithin, polysorbate 80 (SCDLP)
06783 Clean Stamp “Nissui” Mannitol Salt Agar with Egg Yolk (MSEY)
06782 Clean Stamp “Nissui” Mannitol Salt Agar with Egg Yolk (MSEY)
06791 Clean Stamp 25 “Nissui” SCD Agar (SCD)
06790 Clean Stamp 25 “Nissui” SCD Agar (SCD)
06789 Clean Stamp “Nissui” Cetrimide Kanamycin Sulfate
Nalidixic Acid Agar (PSEU)
06793 Clean Stamp 25 “Nissui” SCDLP Agar (SCDLP)
06792 Clean Stamp 25 “Nissui” SCDLP Agar (SCDLP)
06795 Clean Stamp 25 “Nissui”
Sabouraud Agar with Chloramphenicol (CPSB)
06794 Clean Stamp 25 “Nissui”
Sabouraud Agar with Chloramphenicol (CPSB)
Food Allergen Detection Kit
08630 FASTKIT SLIM EGG “Nissui”
08631 FASTKIT SLIM MILK “Nissui”
08632 FASTKIT SLIM WHEAT “Nissui”
08633 FASTKIT SLIM BUCK WHEAT “Nissui”
08634 FASTKIT SLIM PEANUT “Nissui”
08615 FASTKIT ELISA verII EGG “Nissui”
08616 FASTKIT ELISA verII MILK “Nissui”
08617 FASTKIT ELISA verII WHEAT “Nissui”
08618 FASTKIT ELISA verII BUCK WHEAT “Nissui”
08619 FASTKIT ELISA verII PEANUT “Nissui”
08606 FASTKIT ELISA verII SOYBEAN “Nissui”
08621 FA test EIA-Crustacea “Nissui”
08622 FA test Extraction Solution “Nissui”
08623 FA test Immunochromato-Crustacea “Nissui”
Tissue Culture Medium
05900 Eagle’s MEM “Nissui”
08160 Eagle’s MEM “Nissui”
05901 Eagle’s MEM “Nissui”
05902 Eagle’s MEM “Nissui”
05904 Eagle’s MEM Amino Acids and Vitamins Medium “Nissui”
05913 Dulbecco’s PBS (-) “Nissui”
08190 Dulbecco’s PBS (-) “Nissui”
08192 Dulbecco’s PBS (-) “Nissui”
05908 Glutamine “Nissui”
05915 Dulbecco’s Modified Eagle Medium “Nissui”
05919 Dulbecco’s Modified Eagle Medium “Nissui”
05963 SFM-101 “Nissui”
05911 RPMI 1640 Medium “Nissui”
05918 RPMI 1640 Medium “Nissui”
05971 ES Medium “Nissui”
05909 Medium 199 “Nissui”
05910 Ham’s F12 Medium “Nissui”
05905 Hank’s solution “Nissui”
05906 Hank’s solution “Nissui”

Nissui日水微生物培养基产品线

品名 英文名 用途 编号 包装
AC肉汤基础培养基 AC Broth Base 肠球菌 05680 100g
溴甲酚紫平板计数培养基 Plate Count Agar with BCP 测定乳酸菌数量 05622 300g
VP培养基 BC Test VP Medium VP(Veoges-Proskauer) 05154 50支
煌绿乳糖胆盐肉汤(BGLB) BGLB Broth 大肠菌群 05638 300g
Blue light培养基(颗粒) Blue Light Broth 迅速检测大肠菌群及大肠杆菌 05607 300g
BL琼脂培养基 BL Agar 厌氧性细菌的分离、双歧杆菌的鉴别 05430 300g
CLED琼脂培养基 CLED Agar 尿中细菌的分离、定量 05527 300g
CVT琼脂培养基 CVT Agar 测定低温细菌数量 05625 100g
CW琼脂基础培养基(不含KM) CW Agar Base without KM 厌氧性细菌用 05401 100g
DNA琼脂培养基 DNA Agar DNase产生能力确认 05148 100g
GAM半固体培养基 GAM Semisolid 厌氧菌的选择分离 05424 100g
维生素B12培养琼脂 B12 Culture Agar 赖氏乳杆菌(Lactobacillus leichmannii) 05802 100g
NAC琼脂培养基 NAC Agar 非发酵性革兰氏阴性杆菌用 05520 300g
PMT琼脂基础培养基 PMT Agar Base 分离艾尔托霍乱菌 05208 240g
TGC培养基(颗粒) TGC Medium, Fluid 细菌用 05601 300g
X-GAL琼脂培养基 X-GAL Agar 05642 300g
X-SAL琼脂培养基 X-SAL Agar 沙门氏菌分离 05133 300g
标准平板计数培养基 SPC:Standard Plate Count 测定普通活菌数量 05618 300g
改良FM培养基 FM Agar, Modified 梭形杆菌的鉴别、分离 05441 100g
缓冲蛋白胨水 Buffered Peptone Water(BPW) 增加沙门氏菌前培养 05131 300g
类杆菌培养基 Bacteroides Agar 类杆菌的鉴别、分类 05440 100g
葡萄糖蛋白胨培养基 Dextrrose Peptone Broth 真菌(霉菌、酵母)用 05602 300g
氯化钠多粘菌素肉汤 Salt Polymyxin Broth 增加肠炎弧菌 05215 100g
心脏浸液琼脂培养基(颗粒) Heart Infusion Agar 一般细菌用 05503 300g
亚硒酸盐胱氨酸肉汤基础培养基 Selenite Cystine Broth Base 选择增加沙门氏菌 05009 100g
亚硒酸盐肉汤亮绿琼脂基础培养基 SBG Broth Base 选择增加沙门氏菌 05006 100g
一般乳酸菌保存检测用培养基 Lactobacilli Culture Agar 维生素定量用 05800 100g
敏感性测定的肉汤 Sensitivity Test Broth MIC测定 05534 300g
月桂醇硫酸MUG肉汤培养基 Lauryl Sulfate MUG Broth 迅速检查大肠菌群、大肠杆菌 05639 300g

Fisher Scientific Traceable食品危害分析及关键控制点(HACCP)防水温度FIS14-649-102-赛默飞中国代理商

产品信息
产品名称:
Fisher Scientific Traceable食品危害分析及关键控制点(HACCP)防水温度
产品型号:
FIS14-649-102
Fisher Scientific Traceable食品危害分析及关键控制点(HACCP)防水温度FIS14-649-102 产品特点
  产品特色 ● Traceable 食品 HACCP 防水温度计采用了易于使用的薄膜开关 及耐用的 ABS 体,因而非常适合于在食品实验室、食品加工、食 品制备及酿造工艺中使用。 ● 它的防水构造使它能够在实验室、工厂、冲洗区及所有食品区域 中使用。 ● 为了适应多种用途,这种装置将非接触式、非入侵式红外线温度 计与贯入式不锈钢探针温度计组合在一起。它是专门为 HACCP (危害分析与关键控制

Fisher Scientific Traceable食品危害分析及关键控制点(HACCP)防水温度FIS14-649-102
产品详细信息:

Fisher Scientific Traceable食品危害分析及关键控制点(HACCP)防水温度计

产品特色

Traceable 食品 HACCP 防水温度计采用了易于使用的薄膜开关 及耐用的 ABS 体,因而非常适合于在食品实验室、食品加工、食 品制备及酿造工艺中使用。

它的防水构造使它能够在实验室、工厂、冲洗区及所有食品区域 中使用。

为了适应多种用途,这种装置将非接触式、非入侵式红外线温度 计与贯入式不锈钢探针温度计组合在一起。它是专门为 HACCP (危害分析与关键控制点)的温度测量而设计的,是确保食品安 全的一种尖端技术。它的发光二极管(LED)灯指示出 HACCP 的区带:绿灯表示低于 4 (40) 或高于 60 (140),而指 示出危险的红灯则表示温度在 4 60 (40 140) 之间。

红外线的温度量程是 -67 482 (-55 250 ),探针的 量程是 -67 626 (-55 330 )。装置的分辨率在 -10 200- 之间是 0.2 (0.5),在此范围之外则为 1°,红外 线在 -5 65℃之间的精度是 ±0.6℃,探针在此范围的精度是 ±0.5℃。读数每秒钟刷新。它的显示屏可以显示当前温度、zui低 或zui高温度、电池低电量以及红外线发射率。默认的红外线发射 率是 0.95,可以在 0.1 1.0 之间调节。实际视场比是 2.5:1(例 如在 127 毫米的距离处读数的点尺寸是 51 毫米)。

Fisher Scientific Traceable食品危害分析及关键控制点(HACCP)防水温度FIS14-649-102 为了确保精度,这款温度计由 A2LAA2LA CNAL 的校准证书是互相承认的)认可 ISO 17025 校准实验室颁发了单独编号的 Traceable 证书。这份证书表明,此项产品符 合美国国家标准技术研究院(NIST)颁布的标 准。它配有宽屏高亮液晶显示屏,显示数字为 6.4 毫米高。它的不锈钢探针采用折叠式,长度 153毫米,装置尺寸为165×25.4×38毫米, 总长可延伸到318毫米。重量99克,配有电池。

技术参数/订购信息

订货号

FIS14-649-102

证书(NIST/A2LA

量程

-67626/-55330

精度

±0.5

探针长度

152mm

混合纤维素滤膜,混合纤维素滤膜订购信息

品牌 其他品牌 货号 A300A090C
供货周期 现货 应用领域 医疗/卫生,环保/水工业,生物产业,综合

A300A090C 日本ADVANTEC 混合纤维素滤膜硝化纤维 3um用途? 标准滤膜可使用在不同实验室应用,包括生物液体过滤消毒,微生物分析,污染分析和空气监控. 可以透明化观看收集的颗粒,使用兼容液体(浸油(immersion oil),甲苯(toluene)), 有方格滤膜可量化微生物生长.可选没有消毒或经环氧乙烷

A300A090C 日本ADVANTEC 混合纤维素滤膜硝化纤维 3um

混合纤维素酯 Mixed Cellulose Esters (MCE) 混合纤维素酯 Mixed Cellulose Esters (MCE)

• 成分:混合纤维素酯(Mixed Cellulose Esters)包括

硝酸纤维素(cellulose nitrate)和醋酸纤维素

(cellulose acetate),也称为硝化纤维

(nitrocellulose).

• 高度多孔结构提供较大流速.

• 高蛋白质捆绑性,可使用预处理作为预防.

• 高纯度:没有表面活性剂(Triton-Free).

• 可高温高压消毒:可承受高温高压温度zui高130°C

不会影响起泡点,流速或微生物的过滤性能.

• 快速湿润时间:使用1%亚甲基蓝(methylene blue)湿润

47mm直径滤膜,时间小于<3秒.

A300A090C 日本ADVANTEC 混合纤维素滤膜硝化纤维 3um用途

• 标准滤膜可使用在不同实验室应用,包括生物液体过滤

消毒,微生物分析,污染分析和空气监控.

• 可以透明化观看收集的颗粒

– 使用兼容液体(浸油(immersion oil),甲苯(toluene)),

– 选择透光滤膜用于”热障碍”丙酮蒸汽法

(“hot block”acetone vapor method).

• 有方格滤膜可量化微生物生长.

• 可选没有消毒或经环氧乙烷(ethylene oxide)消毒

两种滤膜.

 混合纤维素滤膜,混合纤维素滤膜订购信息

 

订购信息:

A300A013A 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径13mm,100 100
A300A020A 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径20mm,100 100
A300A025A 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径25mm,100 100
A300A047A 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径47mm,100 100
A300A050A 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径50mm,100 100
A300A090C 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径90mm,25 25
A300A110C 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径110mm,25 25
A300A142C 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径142mm,25 25
A300A293C 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径293mm,25 25
A300A293H 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,60mm中孔,直径293mm,25 25
A300A304C 混合纤维素酯(MCE),孔径3um,白色,无格线,无吸收垫,未灭菌,直径300x300mmmm,25 25

PTFE降解容器No.1(容积:8ml,外径×全高(mm):40φ×56)日本三博特sanplatec

PTFE降解容器No.1(容积:8ml,外径×全高(mm):40φ×56)
产品编号: WEB9262 价格: 会员价:0元;市场价:0元 产品特点
/
产品规格

容积(ml):8     
外径×全高(mm):40Φ×56
内径×全高(mm):20Φ×25

材料

确认材料的耐药性 >> 耐药性检索

        PTFE降解容器No.1(容积:8ml,外径×全高(mm):40φ×56)PTFE降解容器No.1(容积:8ml,外径×全高(mm):40φ×56)产品特征

特点:PTFE制成的耐压分解容器。 No.1 ~ No.3 用于常温下进行酸分解,No.4、No.5 用于硝酸的加 No.3热湿法消解。
●注意
湿分解中硝酸可加热至沸点121℃。更高温度时,蒸汽会造成内部高压,有可能导致变形、渗漏、破损等危险。请把内部加入酸和样本的No.4和No . 5放入孵育箱加热 。不能够正确控制内部温度,请不要使用微波加热。 全部PTFE制品,溶出离子的分析值没有偏差。请充分确认反应条件后使用。

 

卡尔费休试剂-库伦法/容量法试剂

卡尔费休试剂-库伦法/容量法试剂

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

卡尔费休试剂-库伦法/容量法试剂AQUAMICRON® 卡尔费休试剂



卡尔费休试剂-库伦法/容量法试剂

卡尔费休法使用卡尔费休试剂测定水分含量,该试剂定量地、有选择性地与水发生反应。卡尔费休试剂的组成成分是碘、二氧化硫、盐基和溶剂,如酒精。

这种方法可用于库伦及容量滴定系统。该法基于卡尔费休试剂与水反应的碘定量法,如果试样中含有能够与碘反应的物质或者某些通过碘化物氧化而产生碘的物质,结果出现误差。

即使某些物质不能直接滴定,其水分还可以用间接法加以测定,如水汽化法。详情请向金畔(www.boppard.cn)垂询。

库伦试剂(AQUAMICRON® )特别:AXI可代替AX,价格更优。


货号

品名

规格

包装

主要溶剂

用途

621-01755

AQUAMICRON® AXI (AQ-AXI)

可代替全部库伦试剂,无吡啶AXI

最大水分0.15 mg H2O/mL

500 mL

甲醇,碳酸丙烯酯,不含氯仿和吡啶

阳极液:检测有机溶剂、无机物化学品、油类、石油产品、各种汽油等

604-07485

AQUAMICRON® AX

阳极液,用于一般用途AX

601-07255

AQUAMICRON® AS

阳极液,用于油类AS

最大水分0.15 mg H2O/mL

500 mL

甲醇,氯仿,含有4-二甲胺基吡啶

阳极液:检测石脑油、汽油、柴油、绝缘油等

605-07591

AQUAMICRON® AKX

阳极液,用于酮类AKX

最大水分0.15 mg H2O/mL

500 mL

碳酸丙烯酯,二甘醇-甲醚,不含氯仿,含有4-二甲胺基吡啶

阳极液:检测酮类、硅油、低羟基酸、某些醛类(芳香族化合物)等

602-07501

AQUAMICRON® CXU

阴极液,通用CXU

最大水分0.6 mg H2O/mL

5 m10

甲醇,不含吡啶

阴极液:与AXI/AX/AS/AKX配合使用

632-07065

AQUAMICRON® FLS

用于无玻璃型电解池FLS

最大水分0.15 mg H2O/mL

500 mL

甲醇,碳酸丙烯酯,不含吡啶

适用于一液型、无玻璃型电解池:有机溶液(酒精、酯类、苯、甲苯),无机气体等

 


◆容量滴定法试剂:SS-Z(无吡啶型)


类别

货号

品名

包装

用途

规格

滴定剂

631-03495

AQUAMICRON Titrant SS-Z 1mg (Karl Fischer Reagent SS-Z)

容量法,一般用途,滴定剂SS-Z 1mg,无吡啶

500 mL

适合于一般用途低含水量,溶剂是二甘醇-甲醚

滴定量0.71.2 mg H2O/mL

634-03505

AQUAMICRON Titrant SS-Z 3mg (Karl Fischer Reagent SS-Z)

容量法,一般用途,滴定剂SS-Z 3mg,无吡啶

500 mL

适合于一般用途,溶剂是二甘醇-甲醚

滴定量2.53.5 mg H2O/mL

631-03515

AQUAMICRON Titrant SS-Z 5mg (Karl Fischer Reagent SS-Z)

容量法,一般用途,滴定剂SS-Z 5mg,无吡啶

500 mL/1 L

一般用途高含水量,溶剂是二甘醇-甲醚

滴定量4.55.5 mg H2O/mL

636-03521

脱水溶剂

608-07525

AQUAMICRON Solvent GEX

容量法溶剂,一般用途,无吡啶GEX溶剂

500 mL

【通用】有机溶剂、无机化学品、农用化学品,医药品,化肥,清洁剂,食品等

含水量0.2 mg H2O/mL

635-03535

AQUAMICRON Solvent OLX

容量法溶剂,用于油类,无吡啶OLX溶剂

500 mL

【油类用】石脑油,汽油,柴油,绝缘油等

含水量0.5 mg H2O/mL

605-07535

AQUAMICRON Solvent OLII

容量法溶剂,用于油类脂肪,无吡啶OLII溶剂

500 mL

【油类.油脂类用】石脑油,汽油,柴油,重油,绝缘油,油类和脂肪(硬化油,人造黄油等)等

含水量0.3 mg H2O/mL

632-03545

AQUAMICRON Solvent KTX

容量法溶剂,用于酮类,无吡啶KTX溶剂

500 mL

【酮类用】酮类,硅油,乙酸和其他低羟基酸,醛类(乙醛除外)等

含水量0.5 mg H2O/mL

603-07335

AQUAMICRON Solvent SU

容量法溶剂,用于糖类,无吡啶SU溶剂

500 mL

【糖类用】糖类,蛋白质,胶质,添加剂,动物饲料等

含水量0.2 mg H2O/mL

 

◆SS系列(吡啶型)


类别

货号

品名

包装

用途

规格

滴定剂

608-07025

AQUAMICRON Titrant SS 1mg (Karl Fischer Reagent SS)

容量法,一般用途,滴定剂SS 1mg,含吡啶

500 mL

适合于一般用途低含水量,溶剂是氯仿和吡啶

滴定量0.7~1.2 mg H2O/mL

601-07015

AQUAMICRON Titrant SS 3mg (Karl Fischer Reagent SS)

容量法,一般用途,滴定剂SS 3mg,含吡啶

500 mL

适合于一般用途,溶剂是氯仿和吡啶

滴定量2.53.5 mg H2O/mL

603-07215

AQUAMICRON Titrant SS 10mg (Karl Fischer Reagent SS)

容量法,一般用途,滴定剂SS 10mg,含吡啶

500 mL

一般用途高含水量,溶剂是氯仿和吡啶

滴定量812 mg H2O/mL

脱水溶

600-07085

AQUAMICRON Solvent ML

容量法溶剂,一般用途,ML溶剂

500 mL

【通用】有机溶剂、无机化学品、农用化学品,医药品,化肥,清洁剂,食品等

含水量0.2 mg H2O/mL

604-07125

AQUAMICRON Solvent MS

容量法溶剂,一般用途,含吡啶MS溶剂

500 mL

【通用】有机溶剂、无机化学品、农用化学品,医药品,化肥,清洁剂,食品等,含吡啶

含水量0.2 mg H2O/mL

603-07075

AQUAMICRON Solvent CM

容量法溶剂,用于油类CM溶剂

500 mL

【油类.油脂类用】石脑油,汽油,柴油,重油,绝缘油,油类和脂肪(硬化油,人造黄油等)等,含氯仿

含水量0.3 mg H2O/mL

604-07245

AQUAMICRON Solvent CP

容量法溶剂,用于酮类CP溶剂

500 mL

【酮类用】酮类,硅油,乙酸和其他低羟基酸,醛类(乙酰除外)等,含氯仿

含水量0.5 mg H2O/mL

606-07065

AQUAMICRON Solvent PE

容量法溶剂,用于酮类,PE溶剂

500 mL

【酮类用】酮类,硅油,乙酸和其他低羟基酸,醛类(乙酰除外)等,含吡啶

含水量0.2 mg H2O/mL

607-07095

AQUAMICRON Solvent FM

容量法溶剂,用于糖类FM溶剂

500 mL

【糖类用】糖类,蛋白质,胶质,添加剂,动物饲料等

含水量0.2 mg H2O/mL

600-07105

AQUAMICRON Solvent PP

容量法溶剂,用于醛类,PP溶剂

500 mL

【醛类】乙醛、丙醛、丁醛等,含吡啶

含水量0.2 mg H2O/mL

607-07115

AQUAMICRON Solvent ME

容量法溶剂,用于汽化器ME溶剂

500 mL

【用于汽化器】气态试样,氮气等

含水量0.2 mg H2O/mL

 


水标准试剂:可溯源到NIST SRM2890,附有分析检测成绩书。


类别

货号

品名

包装

用途

规格

容量滴定

608-07581

AQUAMICRON Water Standard 10mg

水标准品 10mg

8 m10

容量法中标定

KF试剂的滴定度

滴定量  

10±0.5 mg H2O/mL

600-07041

AQUAMICRON Standard Water Methanol Solution 2mg

水标准甲醇溶液

250 mL

逆滴定的滴定剂

标定滴定剂的滴定量

含水量  

2.0±0.01 mg H2O/mL

库伦滴定法

639-15101

AQUAMICRON® Water Standard 0.1mg

卡尔费休试剂水标准品 0.1mg

5 m10

检测库伦水分仪的精确度

滴定量

0.1±0.01 mg H2O/mL

604-07561

AQUAMICRON Water Standard 0.2mg

水标准品 0.2mg

5 m10

检测库伦水分仪的精确度

滴定量

0.2±0.01 mg H2O/mL

601-07571

AQUAMICRON Water Standard 1mg

水标准品 1mg

5 m10

检测库伦水分仪的精确度

滴定量

1±0.05 mg H2O/mL

609-07511

AQUAMICRON Check Solution P

检查溶液P

100 mL

终点调节液,可以与AX和AKX一起使用

含水量

3.8~4.2 mg H2O/mL

637-07071

AQUAMICRON Solid Water Standard

固体水标准品

10 g

用于带水分汽化法

装置水分仪

含水量

3.83±0.1%



欲了解相关资料详情请点击:

水分测试方法概述

锂电池新能源的“绊脚石”——水分

三菱化学卡尔费休试剂使用小知识


欲了解更多相关产品请点击:三菱卡氏水分仪

欲了解相关视频请点击文字:


1. 如何处理脂肪油

2. 如何处理粘性样品-1蜂蜜

3. 如何处理粘性样品-2胶粘剂

4. 如何处理吸湿性粉末样品

5. 如何处理其他粉末样品

6. 如何处理树脂样品

7. 如何处理油制样品

8. 如何处理液化气样品

产品编号 产品名称 产品规格 产品等级 产品价格
AQ-AXI AQUAMICRON® AXI (621-01755)
 可代替全部库伦试剂,无吡啶AXI
500mL

神经细胞用培养基

神经细胞用培养基

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

神经细胞用培养基神经细胞用培养基



  本产品含有大鼠神经细胞胶质的细胞培养上清,是大鼠/小鼠的原代神经细胞无血清培养基,最适用于培养中枢神经细胞,该产品经Sumitomo Bakelite公司技术指导,是神经细胞用培养液(货号:MB-X9501)的延续品。

 


◆特点

  ●神经树突伸展迅速

  ●可低密度培养


维持细胞生存活性对比:

  

 神经树突确认(MAP2免疫染色)

本产品

神经细胞用培养基



其他培养基+其他补充剂+5%FBS


神经细胞用培养基


实验条件:

  细胞数:6.6×105cell/ml(小鼠妊娠第18天从小鼠胎儿小脑分散)

  培养标准:500μl/well(玻璃底皿)

  培养条件:第3天、第七天时培养基进行半量换液,从第三天开始添加Ara-C 2μM


实验数据提供:

  东京慈惠会医科大学 再生医学研究部

  岡野 James 洋尚先生、小川优树先生


  MTT 试剂


 

神经细胞用培养基


实验条件:细胞数:2.5×105cell/mL(妊娠第17天从大鼠胎儿的大脑半球分散)

培养标准:200μl/well(48well/板)

培养条件:Ara-C(-):37℃、CO2:5%,培养5天。
     Ara-C(+):37℃、CO2:5%、培养3天之后添加200μM Ara-C 10μL/well,再培养2天(合计培养5天)

 

相关产品


冻结神经细胞


产品编号

品 名

规 格

容 量

神经细胞用培养基 082-10291

Hippocampus, from Mouse (embryonic day 16)  神经细胞用培养基

用于培养细胞

2.5 小鼠胎儿/支

神经细胞用培养基 033-24871

Cerebral   Cortex, from Rat(embryonic day 17) 神经细胞用培养基

2  大鼠胎儿/支

神经细胞用培养基 036-24861

Cerebral   Striatum, from Rat(embryonic day 17) 神经细胞用培养基

大鼠胎儿/支

神经细胞用培养基 085-10301

Hippocampus,   from Rat(embryonic day 19) 神经细胞用培养基

2.5 大鼠胎儿/支

神经细胞用培养基 030-24881

Cerebral   Cortex, from Mouse(embryonic day 15) 神经细胞用培养基

2  小鼠胎儿/支

神经细胞用培养基=保存温度-150℃

神经细胞用分散液

产品编号

品名

规格

容量

神经细胞用培养基 291-78001

Neuron Dissociation Solutions  神经细胞用培养基

用于细胞培养

4次份/箱

神经细胞用培养基 297-78101

Neuron Dissociation Solutions S 神经细胞用培养基

10次份/箱

神经细胞用培养基=保存温度-80℃

添加剂

产品编号.

品名

规格

容量

030-11951

Cytosine-1-β-D(+)-arabinofuranoside 神经细胞用培养基

 (别名:Ara-C)

用于生化学

100mg

034-11954

500mg

036-11953

1g

神经细胞用培养基=保存温度2~10℃

神经细胞用培养基

神经细胞用培养基.pdf



产品编号 产品名称 产品规格 产品等级 产品价格
148-09671 Neuron Culture Medium   100ml 用于细胞培养

容量瓶,带螺旋盖,PP材质, PP容量瓶 带盖容量瓶 供应

  • 产品描述

精确度符合ISO 384的B级要求
适用于精确测量定量的液体,制备和储存标准溶液

· 耐破碎,具有良好的耐化学性

· 印刷持久,永不磨损

· 无混淆读数的弯月面

· 防漏

产品编号 容量(ml)

方差

(±mL)

包装形式

84209-0110
84209-0125
84209-0150
84209-0141
84209-0152
84209-0171
84209-0181

10
25
50
100
250
500
1000

0.04
0.06
0.1
0.16
0.24
0.40
0.60

2只/ 盒, 48只/箱

2只/ 盒, 48只/箱

2只/ 盒, 48只/箱

2只/ 盒, 48只/箱

1只/盒, 24只/箱

1只/ 盒, 12只/箱

1只/ 盒, 6只/箱

SCREEN-WELL® 天然产物化合物库

SCREEN-WELL® 天然产物化合物库
SCREEN-WELL® Natural Product library

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献


   Enzo Life Sciences提供一系列独一无二的化合物库,包括各类抑制剂、激活剂和诱导剂等各种小分子。随货附送完整的证明书,化合物活性描述、包装规格、化合物浓度含量、物理性状和结构式。方便客户查阅。



优点、特色


u  广泛的产品线:

   超过3000种小分子化合物,包括:天然化合物、酶抑制剂激活剂、手提配体、药物、脂肪酸等

   独特的化合物库,包括:FDA认证化合物库、天然化合物库、化学基因组学和信号通路相关化学物库等。

u  新颖的化合物:

   化合物库中包含各种小分子,包括Enzo公司最新研发的化合物。

u  简单、低成本:

   化合物全部溶在相应溶剂中,无需额外溶解步骤,即可进行筛选。

SCREEN-WELL® 天然产物化合物库

SCREEN-WELL® 毒性化合物库


 SCREEN-WELL® 化合物库可用于心脏毒性、肝脏毒性和造血毒性研究,这些化合物毒性明确、对不同器官有相关毒性证明资料。该库中含有许多结构、机制不同的化合物,且有无毒化合物作为对照。该化合物库在预测毒理学筛选(包括高通量筛选)中非常有用。


优点、特色


u  大量毒性明确且毒性不同的化合物

u  包含无毒对照品

u  96孔板包装,溶于DMSO中,即可进行筛选


Natural Products

Natural product library


 天然产物化学多样性丰富,特别适用于筛选具有药理活性的小分子化合物。通常情况下,很多新药都是来源与天然产物。该化合物库中包括500多种已知结构的高纯度天然产物。化合物都溶于DMSO中。根据客户需要,部分化合物可提供大包装。


化合物包括:

Terpenoids

Peptolides

Flavones

Coumarins

Alkaloids

Macrolides

Isoflavones

Synthetic    derivatives

产品编号 产品名称 产品规格 产品等级 产品价格
BML-2865-0500 SCREEN-WELL® Natural Product library 
SCREEN-WELL® 天然产物化合物库
1library
BML-2865-0100 SCREEN-WELL® Natural Product library 
SCREEN-WELL® 天然产物化合物库
1library