日本同仁化学糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270
糖酵解/氧化磷酸化检测试剂盒
Glycolysis/OXPHOS Assay Kit
商品信息
储存条件:0-5度保存,避光
运输条件:常温

特点:

●酶标仪即可检测,无需昂贵的检测仪器

●试剂盒包含所有所需试剂 All in One Kit

●详尽的操作手册

 

 

下载说明书
宣传资料

选择规格:
50tests

期货

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

产品解说
规格性状
产品概述
三种评价方式
实验例
常见问题Q&A
产品文献

产品解说

 

规格性状

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

产品概述

很多癌细胞都是主要依靠糖酵解途径产生ATP,而近年来的研究发现,如果抑制癌细胞的糖酵解途径,细胞中的主要能量代谢会从糖酵解途径向线粒体的氧化磷酸化途径转移。对于这一现象的研究,有望成为新的抗癌药物研发的靶点,并且在细胞衰老、神经退行性疾病等其他疾病的治疗和药物研发的工作中也具有潜力,因此而备受瞩目。

本试剂盒通过酶标仪就可以方便快捷的检测糖酵解能、细胞代谢途径转移、细胞对糖酵解途径和氧化磷酸化途径的依赖程度。试剂盒中包含所有所需的试剂,可大幅减少实验前的准备工作和时间。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

三种评价方式

用Oligomycin抑制氧化磷酸化(OXPHOS)的ATP合成,或者用2-Deoxy-D-glucose(2-DG)抑制糖酵解(Glycolysis)的ATP合成,然后通过检测ATP的量(发光法)和Lactate的量(吸光度法)对下图中的①~③进行评价。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

实验例

对糖酵解抑制剂(2-DG)处理后的HeLa细胞进行糖酵解能评价和代谢途径转移评价。糖酵解能评价(左图)的结果可以看出,HeLa细胞经过糖酵解抑制剂作用后,糖酵解能明显降低。而代谢途径转移评价的结果(右图)可以看出,糖酵解抑制剂作用后,HeLa细胞内的代谢途径开始向氧化磷酸化转移,由线粒体产生的ATP明显增加。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

常见问题Q&A

Q:一个试剂盒可以检测多少个样品?
A:按照每个样品3个复孔计算,可检测的样品数请见下表:

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

※以上是按照不做预实验,最多可能检测的样品数量。

※Lactate Assay时,如果培养基内含有血清,建议单独检测含有血清的培养基,作为背景空白扣除。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

※以上是先做预实验,再做正式实验时,最多可能检测的样品数量。

※Lactate Assay时,如果培养基内含有血清,建议单独检测含有血清的培养基,作为背景空白扣除。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

糖酵解能评价(Lactate Assay)的孔板设置例(n=3时)

(左:不做预实验; 右:做预实验)

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

代谢途径转移评价(ATP Assay)的孔板设置例(n=3时)

(左:不做预实验; 右:做预实验)

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

代谢途径依赖程度评价的孔板设置例(n=3时)

(左:ATP Assay; 右:Lactate Assay)(不做预实验)

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

代谢途径依赖程度评价的孔板设置例(n=3时)

(左:ATP Assay; 右:Lactate Assay)(做预实验)

Q:在做糖酵解能评价时,实验孔与空白孔(只含培养基)的吸光度没有变化,是什么原因?有哪些改善方法?
A:可能的原因是细胞释放的乳酸量过少,建议提高细胞数,增加培养时间(3小时⇒5小时)。
Q:是否需要通过使用蛋白质定量分析使乳酸和ATP浓度正常化?
A:Oligomycin和2-DG处理5小时的检测结果,用蛋白定量校正和不校正的结果几乎没有变化。但是,如果检测中使用其他药物时,请预先确认该药物是否会对细胞数和蛋白质的量有影响,然后再用本试剂盒检测。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

需要用蛋白质定量进行校正的时候,请参考下图中的步骤。

※在进行蛋白质定量校正的时候,由于ATP Assay的试剂的原因,不能使用ATP Assay或Lactate Assay检测时使用的细胞,请额外专门准备蛋白质定量用的细胞悬液。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

Q:Lactate Assay时,是否可以用450 nm以外的滤光片检测?
A:如果没有450 nm的滤光片,可以用490 nm滤光片检测,不过检测得到的吸光度的值要比450 nm检测时低。

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

Q:发光信号是否稳定?
A:发光信号在3小时以内都稳定。不过,发光信号会受温度和光照影响,如果不能立即检测的话,请在避光和25℃环境下静置。
Q:检测时是否可以用白色96孔板以外的孔板?
A:黑色和透明孔板都会造成发光强度的降低,透明孔板还会导致背景升高。因此建议使用白色96孔板。
Q:  ATP检测时用的发光法,检测波长为多少?
A:由于P是通过萤光素检测,所以检测波长为556 nm。

产品文献

No. Sample Reference
1 Cell
(RAW264.7)
H. Gu, Y. Zhu, J. Yang, R. Jiang, Y. Deng, A. Li, Y.   Fang, Q. Wu, Honghuan Tu, Haishuang Chang, Jin Wen, and X. Jiang, “Liver-Inspired Polyetherketoneketone Scaffolds   SimulateRegenerative Signals and Mobilize Anti-InflammatoryReserves to   Reprogram Macrophage Metabolism for Boosted Osteoporotic   Osseointegration”, Adv. Sci., 2023, doi.org/10.1002/advs.202302136.
2 Cell
(A549)
L.   Liu, B. Wang, R. Zhang, Z. Wu, Y. Huang, X. Zhang, J. Zhou, J. Yi, J. Shen,   M. Li, and M. Dong, “The activated CD36-Src   axis promotes lung adenocarcinoma cell proliferation and actin   remodeling-involved metastasis in high-fat environment”, Cell Deat   & Disease, 2023, doi.org/10.1038/s41419-023-06078-3.
3 Canine GL cell lines H.   Yamazaki, S. Onoyama, S. Gotani, T. Deguchi, M. Tamura, H. Ohta, H. Iwano, H.   Nishida, P.J. Dickinson and H. Akiyoshi, ‘Influence   of the Hypoxia-Activated Prodrug Evofosfamide (TH-302) on Glycolytic   Metabolism of Canine Glioma: A Potential Improvement in Cancer   Metabolism’, Cancers, 2023, doi:10.3390/cancers15235537.
4 Cell
(Primary Hepatocyte)
S.   Tsuno, K. Harada, M. Horikoshi, M. Mita, T.   Kitaguchi, M. Y. Hirai, M. Matsumoto and T. Tsubo , ‘Mitochondrial ATP concentration decreases immediately after   glucose administration to glucose-deprived hepatocytes’, FEBS Open   Bio, 2023, doi:10.1002/2211-5463.13744.

关联产品

Lactate Assay Kit-WST试剂盒
乳酸检测试剂盒

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒
氧消耗量检测试剂盒

Glucose(葡萄糖)摄取能力检测试剂盒-Green
葡萄糖摄取检测试剂盒

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence
ADP/ATP比率检测试剂盒

Glucose Assay Kit-WST试剂盒
葡萄糖检测试剂盒

日本同仁化学Glycolysis/JC-1 MitoMP Assay Kit货号:G272- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Glycolysis/JC-1 MitoMP Assay Kit货号:G272
糖酵解(乳酸生成量)和线粒体膜电位(JC-1)同时检测试剂盒
Glycolysis/JC-1 MitoMP Assay Kit
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

● 一个样品同时检测两种指标

● 包含所有所需试剂

● 详细的操作步骤

下载说明书
宣传资料

选择规格:
50testsA

现货

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

规格性状
产品概述
产品特点
检测原理
实验例
常见问题Q&A

规格性状

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

产品概述

线粒体功能与细胞代谢之间的联系是众所周知的,对一系列疾病都有影响,包括癌症、衰老和神经退行性疾病。已经发现,衰老细胞通常依靠糖酵解系统生存,而不是利用线粒体能量来源。相反,即使糖酵解系统受到抑制,通常严重依赖糖酵解的癌细胞激活线粒体功能依然能确保其存活,。鉴于这些观察结果,越来越有必要研究线粒体功能和糖酵解途径,以增强我们对细胞内代谢改变的理解。我们的试剂盒允许测量乳酸产生(通过乳酸测定)以检测糖酵解系统的变化,以及线粒体膜电位(通过JC-1测定)以评估线粒体功能。该试剂盒的概念是提供来自同一样品的全面一站式检测,以跟踪细胞内代谢的变化并指导后续更详细的分析。该试剂盒包括检测所需的所有试剂,还提供组合方案。

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

产品特点

任何刺激引起的细胞内代谢变化都可以通过测量乳酸产生和线粒体膜电位来检测。

在某些情况下,尽管细胞糖酵解系统或线粒体功能(能量产生的主要途径)受到损害,但细胞仍设法存活。据了解,这是因为细胞努力通过增强糖酵解来持续并防止细胞死亡,即使线粒体功能受损,或者在糖酵解受损时激活线粒体功能,同时监测糖酵解系统和线粒体功能。如下所述,可以深入了解细胞内发生的事情。

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

同时测量同一样品

通过从单个样品中分离上清液和细胞,可以同时测量线粒体膜电位(JC-1测定)和乳酸产生。详细的测量方法在说明书中描述。

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

检测原理

该试剂盒包括乳酸检测试剂盒,旨在通过测量WST甲臜吸光度来检测细胞培养基中的乳酸产生。此外,它还具有JC-1染料,用于使用荧光测量检测细胞内的线粒体膜电位。使用酶标仪在同一样品上轻松定量这两个靶标,便于评估代谢变化。

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

实验例

用糖酵解抑制剂2-脱氧-D-葡萄糖(2-DG)处理的HeLa细胞的细胞内代谢变化

当我们使用CCK-8*测定法评估8-DG处理的HeLa细胞的细胞活力时,我们观察到活力的微小变化。然而,鉴于观察到乳酸产生的减少,它促使我们质疑尽管糖酵解系统受到抑制,如何维持细胞活力。为了回答这个问题,我们使用JC-1测定法检查了线粒体膜电位。这项研究的结果表明,当糖酵解系统被2-DG抑制时,HeLa细胞通过增强线粒体功能来维持其存活。

※ 细胞计数试剂盒-8(产品代码:CK04)不包含在本试剂盒中。

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

常见问题Q&A

Q:每个试剂盒可以检测多少样品?
A:【乳酸测定】按每个样品3个复孔计算,您可以检测到如下样品数量

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

*如果样品的乳酸浓度未知,请进行预实验,以确定稀释比例,使其低于1 mmol/l乳酸标准溶液的吸光度。 请参照说明书中“检测样品的制备”。

*进行预实验或不进行预实验时,可检测的最大样品数详见以上表格。

*进行乳酸测定时,如培养基含有血清,建议制备一个含血清的培养基的测量样品,作为背景对照。

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

乳酸测定的孔板设置示例(n = 3)

(左:无预实验,右:预实验)

【JC-1 检测】

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

※ 本试剂盒,至少可使用96孔板检测48个孔。

Q: 使用此试剂盒进行乳酸检测和 JC-1 检测需要多长时间?
A: 实验流程和每次测定所需的时间(大约)如下图所示。

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

Q: 【乳酸检测】是否可以先进行乳酸测定,然后在收集上清液后进行JC-1测定?
A: 如果首先进行乳酸测定,测量时间的差异可能会由于刺激条件的不同而影响结果。 收集上清液后,请务必先进行JC-1测定。 细胞培养上清液可冷冻(-20°C)保存1个月。
Q: 【乳酸检测】乳酸测定可以使用450 nm以外的波长进行测量吗?
A: 除了 450 nm 外,它还可与 490 nm 滤光片一起使用。 但是,吸光度值会低于在450nm处测量时的值。Glycolysis/JC-1 MitoMP Assay Kit货号:G272
Q: 【乳酸检测】乳酸测定可以测量含有还原性物质的样品吗?
A:如果样品中含有还原性物质,染料WST会变色,您可能无法准确测量乳酸的变化。 如果您的检测物质中含有还原性物质,请准备一些只有待测物+培养基的孔【不含细胞】,作为背景对照。最后计算时,从标准曲线/样品吸光度结果中扣除以上背景对照。
Q:【乳酸检测】工作液稳定性如何?
A:工作液无法保存。 请现配现用。 另外,由于它对光不稳定,因此避光,工作液在室温避光条件下,可稳定保存4个小时。

一旦工作液未避光,则颜色会从红色变为橙色,从而导致背景的增加。

Q:【乳酸检测】细胞培养上清液样品可以保存吗?
A:可以冷冻(-20°C)储存1个月。
Q:【JC-1 检测】我可以使用含血清的培养基吗?
A:含血清的培养基可以在清洗细胞或制备JC-1工作液时使用,在荧光观察时,我们建议使用Imaging Buffer溶液,但如果一定要使用含血清的培养基,也建议使用无酚红的培养基。
Q:【JC-1检测】是否可以固定细胞?
A:不建议,由于线粒体固定后会发生去极化,因此染色后固定和固定后染色都是不可能的。
Q:【乳酸检测】检测到的样品的吸光度与空白孔的吸光度相同, 原因和解决方案是什么?
A:原因可能是细胞释放的乳酸量低。 首先,请增加要接种的细胞数量或进一步延长孵育时间。
Q:【JC-1检测】如何解释增加(或减少)红色和绿色的荧光值的结果?
A:计算每个药物处理后的样品和对照组的红色与绿色荧光值的比率。将两者进行比较,荧光比越低,线粒体膜电位越低。

 

【按红/绿比评估的原因】

由于JC-1以膜电位依赖性方式在细胞中积累,因此每个细胞的JC-1浓度可能因细胞的状态而变化1),2)(由于细胞条件的不同,实验组和对照组的JC-1累积浓度不同)。

此外,当线粒体膜电位高时,JC-1聚集,其荧光从绿色变为红色。

JC-1累积的量则取决于膜电位3)因此样品的线粒体膜电位变化可以通过红/绿比进行分析比较。

〈参考资料〉

1) A. Cossarizza, et al., Biochem Biophys Res Commun., 1993, 197(1), 40.

2) A. Perelman, et al., Cell Death and Disease, 2012, 3, e430.

3) S. T. Smiley, et al., Proc. Nail. Acad. Sci., 1991, 88, 3671.

日本同仁化学氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
氨基酸摄取能力检测试剂盒
Amino Acid Uptake Assay Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 使用荧光显微镜、荧光酶标仪或流式细胞仪即可快速检测

● 简便操作即可检测氨基酸摄取能力

※注意:您选择的孔板类型会对实验结果产生重大影响。并非所有孔板都与本检测方法兼容。 

您可以下拉参考网站“常见问题Q&A”,查看推荐的孔板及其对检测结果的影响。

下载说明书
产品文献
宣传资料下载
学习资料

选择规格:
20tests
100tests

现货

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

产品解说
规格性状
产品概述
运用领域
操作步骤
实验例
与传统方法比较
关联产品
常见问题Q&A
产品文献

产品解说

 

规格性状

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

产品概述

氨基酸是合成蛋白质和核酸的重要来源,对于增殖活性异常活跃的癌细胞来说尤其重要。不仅如此,癌细胞由于其自身糖酵解途径的亢进,造成乙酰辅酶A(Acetoacetyl-CoA)供应的减少,更加剧了对TCA循环来源之一的氨基酸的需求。基于此方面的研究发现,癌细胞中氨基酸转运体LAT1(L-type amino acid transporter 1)的表达明显增高,说明氨基酸的大量摄取是癌细胞的普遍特征之一。这一发现也有望成为癌症药物研发的新靶点。

在癌症免疫治疗领域,治疗效果不仅与癌细胞的代谢变化有关,免疫细胞的代谢调控也至关重要。例如,随着免疫细胞的衰老,代谢平衡的改变会导致免疫细胞对癌细胞的杀伤能力减弱。因此,通过调控免疫细胞的代谢来改善免疫治疗效果的研究也十分盛行。

氨基酸类似物(BPA)通过氨基酸转运体吸收到细胞后,探针穿透细胞膜并与氨基酸类似物结合,发出荧光(λex=360 nm,λem=460 nm)。本试剂盒可使用荧光显微镜、荧光酶标仪和流式细胞仪检测,通过可视化和数值化的检测评价细胞摄取氨基酸的能力,以及氨基酸转运体抑制剂的筛选。氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

本试剂盒是在日本大阪府立大学切畑光统(Kirihata Mitsunori)教授提供情报和指导下开发的产品。

运用领域

抑制氨基酸的吸收是癌症药物开发和筛选的靶点之一。此外,通过比较正常细胞和癌细胞的氨基酸吸收能力,还可以了解癌细胞的恶性程度及其细胞特征。氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

操作步骤

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

实验例

使用本试剂盒检测BCH(氨基酸转运体抑制剂)对HeLa细胞摄取氨基酸能力的阻碍作用。氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

<检测条件>

细胞:HeLa cells

培养基:MEM (5.5 mmol/l Glucose)

培养条件:1 mmol/l BCH/HBSS (Hanks’ Balanced Salt Solution), 37℃, 30 min

检测仪器:荧光酶标仪 (Ex=340-380 nm, Em: 435-485 nm)

检测仪器:荧光酶标仪 (Ex=360 nm, Em: 460 nm)

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

<检测条件>

检测仪器:流式细胞仪 (Ex=405 nm, Em: 425-475 nm)

与传统方法比较

与传统的同位素示踪法和代谢组学检测法相比,操作时间大幅减少。

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

关联产品

产品名 包装 价格 货号
 Glucose Uptake Assay Kit-Blue 1 set 3,980 UP01
    Glucose Uptake Assay Kit-Green 1 set 3,980 UP02
Glucose Uptake Assay Kit-Red 1 set 3,980 UP03

常见问题Q&A

 

Q:推荐什么类型的微孔板?
A:我们推荐以下几种微孔板

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

微孔板的类型对检测结果有何影响,请参考【Q&A:微孔板的类型会影响结果吗?】获取更多信息。

 

Q:微孔板的类型会影响结果吗?
A:是的。并非所有微孔板都与该测定兼容,有些微孔板可能无法进行某些测量(参见参考数据)。

建议使用以下板检测

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

<参考:微孔板之间的比较>

使用Ibidi板和其他制造商的微孔板,我们研究了HeLa细胞在氨基酸转运蛋白抑制剂BCH(2-氨基双环[2.2.1]庚烷-2-羧酸)存在下摄取氨基酸的能力。然而,我们无法确认BCH对吸收的抑制,因为与推荐的Ibidi板相比,在其他制造商的微孔板中观察到更高的背景。

荧光显微镜观察

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

荧光酶标仪检测结果

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

 

 

Q:BPA是通过哪种转运蛋白进入细胞内的?
A:有文献报道BPA是通过LAT1, LAT2, ATB0,+转运进入细胞的(Wongthai P et al., “Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2”, Cancer Sci., 2015, Mar;106(3):279-86)。此外,同仁化学也通过实验验证了BCH等LAT1的抑制剂、leucine等LAT1的底物对BPA摄取的抑制作用。

 

 

 

Q:已经有检测实例的细胞系有哪些?
A:贴壁细胞有HeLa, A549, HepG2, MCF-7, C2C12, MEF, U251;悬浮细胞有MOLT4。

 

Q:BPA被细胞摄入后,是否会被分解或代谢掉?
A:BPA的构造非常稳定,实验操作范围的过程中不会被分解。
Q:BPA被细胞摄入后,能否进行固定化操作?
A:由于探针会从细胞内向细胞外泄漏,所以无法进行染色后的固定化操作。

 

Q:BPA被细胞摄入后,是否会在特定部位积累?
A:被细胞摄取的BPA均匀的分布在细胞内。

 

Q:BPA uptake solution,Working solution能否长时间保存?
A: BPA uptake solution,Working solution无法长期保存,请现配现用。
Q:如果荧光信号没有变化,我该怎么办?
A:主要可能的原因有以下两点:      ①细胞本身对BPA solution的摄入能力较低。此时建议尝试提高BPA solution

的浓度。(5~50倍稀释)

②Working solution发生变质,请重新配置Working solution,保证现配现用。

Q:如果荧光背景较高, 我该怎么办?
A: 检测环境中可能含有未被细胞摄入的BPA。此时建议用HBSS清洗后再检测。
Q:BPA是否可以定量检测?
A:无法进行定量检测,本染料是评价细胞摄取氨基酸能力高低或增减的试剂。

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

产品文献

1、T. Watanabe, Y. Sanada, Y. Hattori, and M. Suzuki, “Correlation between the expression of LAT1 in cancer cells and the potential efficacy of boron neutron capture therapy”, 2022, J. Radiat. Res., doi:10.1093/jrr/rrac077.

2、Wencan Zhang,Xu Cao,Xiancai Zhong,Hongmin Wu,Yun Shi,Mingye Feng,Yi-Chang Wang, David Ann,Yousang Gwack,Yate-Ching Yuan,Weirong Shang ,and Zuoming Sun,”SRC2 controls CD4+ T cell activation via stimulating c-Myc-mediated up-regulation of amino acid transporter Slc7a5″,2023PNAS【11.1】doi:10.1073/pnas.2221352120.

关联产品

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit
糖酵解/氧化磷酸化检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
Lactate Assay Kit-WST试剂盒
乳酸检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒
氧消耗量检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
Glucose(葡萄糖)摄取能力检测试剂盒-Green
葡萄糖摄取检测试剂盒

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence
ADP/ATP比率检测试剂盒

日本同仁化学代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

代谢

细胞内代谢系统(糖酵解系统,TCA回路和电子转移系统)的分析对于理解细胞状态非常重要。
糖代谢
脂质代谢
线粒体呼吸
氨基酸代谢

品名货号用途

Glycolysis/JC-1 MitoMP Assay Kit G272 糖酵解(乳酸生成量)和线粒体膜电位(JC-1)同时检测
糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit G270 方便快捷的检测糖酵解能、细胞代谢途径转移、细胞对糖酵解途径和氧化磷酸化途径的依赖程度
Glucose(葡萄糖)摄取能力检测试剂盒-Blue UP01 葡萄糖摄取能力检测(蓝色荧光)
Glucose(葡萄糖)摄取能力检测试剂盒-Green UP02 葡萄糖摄取能力检测(绿色荧光)
Glucose(葡萄糖)摄取能力检测试剂盒-Red UP03 葡萄糖摄取能力检测(红色荧光)
Glucose Assay Kit-WST试剂盒 G264 葡萄糖含量检测
Lactate Assay Kit-WST试剂盒 L256 乳酸检测试剂盒
α-Ketoglutarate Assay Kit-Fluorometric K261 对细胞内的α-KG进行定量检测

脂肪酸摄取测定试剂盒——Fatty Acid Uptake Assay Kit UP07 脂肪酸摄取检测
Lipi-Blue试剂 LD01 脂滴检测(蓝色)
Lipi-Green试剂 LD02 脂滴检测(绿色)
Lipi-Red试剂 LD03 脂滴检测(红色)
Lipi-Deep Red试剂 LD04 脂滴检测(深红色)
Lipid Droplet Assay Kit-Blue试剂 LD05 脂滴荧光检测(蓝色)
Lipid Droplet Assay Kit-Deep Red试剂 LD06 脂滴荧光检测(深红色)
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence A552 检测细胞中ADP与ATP的比率
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒 E297 氧消耗量检测
Cell Counting Kit-Luminescence试剂盒 CK18 ATP活性检测
Glutamine Assay Kit-WST试剂盒 G268 谷氨酰胺的定量检测
Glutamate Assay Kit-WST试剂盒 G269 谷氨酸的定量检测
NAD/NADH Assay Kit-WST试剂盒 N509 NAD/NADH检测试剂盒
NADP/NADPH Assay Kit-WST试剂盒 N510 NADP/NADPH检测
氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit UP04 检测细胞摄取氨基酸的能力
胱氨酸摄取能力检测试剂盒—Cystine Uptake Assay Kit UP05 胱氨酸摄取能力检测

各项代谢指标完全解读

糖酵解氧化磷酸化代谢关联指标

脂质代谢关联指标

氨基酸代谢关联指标

线粒体相关指标

衰老相关指标

 

当试图了解细胞状态时,分析各种细胞内代谢途径【例如糖酵解系统、三羧酸(TCA)循环、电子运输链等】非常重要。代谢产物和能量来源,【例如葡萄糖、乳酸和NAD(P)+/NAD(P)H】都是用于分析细胞内代谢的指标。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

 

细胞代谢与疾病

近年来,针对癌症、糖尿病等疾病模型的细胞内代谢研究受到了广泛关注。下面是不同疾病的 代谢指标变化的详细介绍。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

癌症

癌细胞在无限增殖的同时保持着活跃的细胞代谢,不断吸收大量的营养物质进行蛋白质、核酸、能量(如ATP)的合成。即使在不利的环境下(低氧气、低营养),癌细胞仍然可以通过改变代谢途径而存活下来。近年来,针对癌细胞的代谢途径的研究也越来越多。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

糖代谢有两种途径:线粒体氧化磷酸化和糖酵解(Glycolysis)。正常哺乳动物细胞在有氧条件下,糖酵解被抑制。而癌细胞即使在氧气充足的情况下,糖酵解仍然十分活跃(瓦格博效应,Warburg effect)。因此,癌细胞大量的摄取糖分并在亢进的糖酵解作用下大量产生乳酸。由于糖酵解途径在生成ATP时并不需要氧气,所以即使在低氧环境下,癌细胞仍然可以增殖。另一方面,癌细胞的线粒体利用氨基酸和脂肪产生NADH,NADH除了用于产生ATP以外,还主要用于抵御氧化还原作用。癌细胞的线粒体有着异常的机能,这会引起线粒体膜电位的上升(过极化)以及过剩的活性氧的产生。因此需要产生大量的谷胱甘肽来维持胞内的氧化还原平衡。而谷氨酰胺 (Glutamine)和胱氨酸(Cystine)是谷胱甘肽合成的必要来源,癌细胞不断的过量摄入这些氨基酸。另外,由于需要 NADPH来维持还原型谷胱甘肽,癌细胞会不断利用从糖酵解、戊糖磷酸途径(pentose phosphate pathway)以及线粒体产生的NADH来维持高浓度的NADPH。

*请注意,上述内容是概括性的癌细胞代谢特征的描述。随着癌细胞种类的不同和环境的变化会有一定差别。

参考文献

下面是一些癌细胞代谢的综述性文献,供初次接触这一领域的研究人员参考。

1) 糖酵解:M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation”, Science, 2009, 324, 1029.

2) 氨基酸代谢、ROS:P. Koppula, Y. Zhang, and B. Gan, “Amino Acid Transporter SLC7A11/xCT at the Crossroads of Regulating Redox Homeostasis and Nutrient Dependency of Cancer”, Cancer Commun., 2018, 38, 12.

3) 氨基酸代谢:E. L. Lieu, T. Nguyen, S. Rhyne, and J. Kim, “Amino Acids in Cancer”, Exp. Mol. Med., 2020, 52, 15.

4) 线粒体、ROS、NADPH:F. Ciccarese and V. Ciminale, “Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells”, Front. Oncol. 2017, 7, 117.

5) NADH:A. Chiarugi, C. Dolle, R. Felici, and M. Ziegler, “The NAD Metabolome-A Key Determinant of Cancer Cell Biology”, Nat. Rev. Cancer, 2012, 12, 741.

⚫ 葡萄糖(Glucose)代谢障碍与抗癌作用

⚫ 氨基酸代谢障碍和抗癌作用

⚫ 1个试剂盒,匀浆和非匀浆自由选择

⚫ 癌细胞免疫与代谢

抑制葡萄糖代谢和抗癌作用

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

癌细胞主要使用糖酵解系统产生ATP,因此针对糖酵解系统的抗癌药物的开发已经进行了很长时间。目前还没有开发出有效的抗癌药物,但糖酵解仍然是癌细胞的主要药物靶点。因此,糖酵解是了解癌细胞代谢的最重要途径。

葡萄糖转运蛋白(GLUT)是药物发现中糖酵解靶蛋白的一个例子。由于癌细胞通过葡萄糖转运蛋白摄取大量的糖,因此可以通过直接抑制葡萄糖转运蛋白来抑制糖酵解。另外,抑制葡萄糖饥饿的活性、糖酵解系统的酶 (己激酶:HK、乳酸脱氢酶:LDH等) ,和抑制糖酵解系统的最终产物乳酸向细胞外的流出也是有效的手段。

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

产品用途 产品名称
货号
葡萄糖检测试剂盒 Glucose Assay Kit-WST G264
乳酸检测试剂盒 Lactate Assay Kit-WST L256
NAD/NADH 检测试剂盒 NAD/NADH Assay Kit-WST N509
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST N510
JC-1 线粒体膜电位检测试剂盒 JC-1 MitoMP Detection Kit MT09

 

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

抑制氨基酸代谢与癌症治疗

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

在增殖活跃的癌细胞中,氨基酸是蛋白质和核酸合成所必需的营养素。由于癌细胞中来自糖酵解系统的乙酰CoA的供给降低,因此积极利用氨基酸

作为TCA循环的营养源。研究表明,癌细胞通过氨基酸转运蛋白的表达量增加,吸收大量氨基酸。特别是谷氨酰胺是谷胱甘肽的原料和TCA循环中必需的α-酮戊二酸的来源,并且针对谷氨酰胺的摄取和代谢(谷氨酰胺分解)的药物开发备受关注。此外,我们发现与许多必需氨基酸摄取有关的氨基酸转运蛋白LAT(L-type amino acid transporter)在许多癌细胞中过度表达,并有望作为新的药物发现目标。
与其他氨基酸不同,氧化还原控制所需的半胱氨酸主要由胱氨酸转运蛋白xCT吸收到细胞中。癌细胞会产生大量的活性氧,从而增加抗氧化剂谷胱甘肽的产生,维持氧化还原平衡。因此,通过抑制谷胱甘肽产生的途径,可以改变细胞内氧化还原平衡,并诱导细胞死亡,如铁吞作用。此外,谷胱甘肽还有助于耐药性,因此涉及谷胱甘肽产生的途径是药物发展的主要目标。特别是最近,长期用作抗炎药的磺胺沙拉嗪和癌症的分子靶向治疗药物索拉非尼布抑制了xCT,通过xCT抑制的铁吞作用引起了人们的关注。

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
NAD/NADH 检测试剂盒 NAD/NADH Assay Kit-WST N509
JC-1 线粒体膜电位检测试剂盒 JC-1 MitoMP Detection Kit MT09
谷氨酰胺检测试剂盒 Glutamine Assay Kit-WST G268
谷氨酸检测试剂盒 Glutamate Assay Kit-WST G269
GSSG/GSH检测试剂盒 GSSG/GSH Quantification Kit G263
脂质过氧化物检测试剂 Liperfluo L248
线粒体过氧化物检测试剂 MitoPeDPP M466
自噬检测试剂 DAPGreen – Autophagy Detection D676

抑制脂肪酸代谢和抗癌作用

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

细胞增殖活跃的癌细胞当然需要大量的脂质。因此,细胞内的脂肪酸合成和细胞外的脂肪酸摄取是很活跃的。因此,许多癌细胞增加了脂质滴的积累。针对癌细胞的治疗目标主要是与脂肪酸的产生相关的途径,并开发了许多抑制剂。

另一方面,癌细胞利用脂肪酸的β氧化来有效地产生能量,以补充糖酵解系统低效能量的产生。因此,以脂肪酸的β氧化为目标的药剂开发也在进行中。

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
脂滴检测试剂盒  Lipid Droplet Assay Kit

– Blue/Deep Red

LD05/LD06
脂滴荧光染料 Lipi-Blue/Green/Red/Deep Red LD01/LD02/LD03/LD04
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST  N510
GSSG/GSH检测试剂盒 GSSG/GSH Quantification Kit G263

癌症免疫治疗与细胞代谢

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

T细胞在消除癌细胞的免疫系统中起着核心的作用。近年来发现,T细胞的分化和活化等调节机制也与细胞内的代谢有关,因此癌症免疫相关的代谢研究也越发活跃起来。癌细胞需要吸收大量营养才能维持增殖活性,而活化的T细胞同样需要大量营养(尤其是葡萄糖)才能消除癌细胞。所以,活化的T细胞与癌细胞存在局部的“葡萄糖竞争”。众所周知,癌细胞可以通过表达活性化T细胞表面的免疫检查点PD-1来抑制T细胞的活性。而且,最近的研究发现,在这个相互作用中,T细胞的葡萄糖摄取也会受到抑制。癌细胞通过抑制免疫细胞的代谢来获得免疫逃逸,因此癌症免疫方面的研究并不局限于癌细胞,对免疫细胞的代谢研究也十分重要。

参考文献 

1) Z. Yin, L. Bai, W. Li, T. Zheng, H. Tian, and J. Cui, “Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic stratety”, J. Exp. Clin. Cancer Res. 2019, 38, 403.

2) L. Almeida, M. Lochner, L. Berod, and T. Sparwasser, “Metabolic pathways in T cell activation and linear differentiation”, Semin. Immunol. 2016, 28(5), 514.

3) A. Kumar and K. Chamoto, “Immune metabolism in PD-1 blockage-based cancer immunotherapy”, Int. Immunol., 2020 Jul 5;dxaa046.

4) D. G. Franchina, F. He, and D. Brenner, “Survival of the fittest: Cancer challenges T cell metabolism”, Cancer Lett., 2018, 412, 216.

5) N. Patsoukis, K. Bardhan, P. Chatterjee, D. Sari, B. Liu, L. N. Bell, E. D. Karoly, G. J. Freeman, V. Petkova, P. Seth, L. Li, and V. A. Boussiotis, “PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation”, Nat. Commun., 2015, 6, 6692.

各抑制剂引起的细胞内代谢变化.文献

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
葡萄糖检测试剂盒 Glucose Assay Kit-WST G264
乳酸检测试剂盒 Lactate Assay Kit-WST L256
谷氨酰胺检测试剂盒 Glutamine Assay Kit-WST G268
谷氨酸检测试剂盒 Glutamate Assay Kit-WST G269

糖尿病

抑制葡萄糖代谢和抗癌作用

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

在高血糖状态下,细胞内葡萄糖浓度升高,多元醇途径代谢增强。这会过 度消耗NADPH,减少还原型谷胱甘肽(GSH)。 其结果是,氧化应激增加,促进细胞损伤。

参考文献 

M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism”, DIABETES, 2005, 54, 1615.

关联产品

 

产品用途 产品名称
货号
NAD/NADH检测试剂盒  NAD/NADH Assay Kit-WST N509
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST N510
谷胱甘肽检测试剂盒 GSSG/GSH Quantification Kit G263

衰老

 

⚫ 衰老相关疾病与乳酸、NAD+的关系

⚫ DNA损伤引发的细胞衰老

⚫ 谷氨酰胺代谢与细胞衰老

衰老相关疾病与乳酸、NAD +的关系

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

近年来,NAD+与衰老之间的关系 引起了人们的关注。单个小鼠的 衰老模型中,在肝脏等中观察到 的NAD+量减少1),并且据报道, 抑制NAD +合成酶会导致衰老细胞 功能下降2)。此外,NAD+量的减 少导致线粒体功能下降3),而线粒 体功能的降低表明NAD+量减少, 从而导致衰老细胞的功能下降4)。

DNA损伤引发的细胞衰老

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

在衰老的细胞中,由于线粒体功能下 降,主要由厌氧的糖酵解通路产生ATP, 因此乳酸的产生量增加7)。 DNA损伤是细胞衰老导致线粒体功能 障碍的原因之一。 DNA损伤的积累会激活 DNA修复机制并增加NAD+消耗。 NAD+量的减少会降低SIRT1活性,这 是维持线粒体功能的重要因素,导致线粒 体功能的降低(电子转移的抑制→ATP产 生/ NAD+量的减少)3),8)。

谷氨酰胺代谢和细胞衰老

抑制肿瘤的menin通过靶向依赖mTORC1的代谢激活来预防效应CD8T细胞功能障碍9)。

Menin是一种肿瘤抑制因子,在预防衰老和疲劳等T细胞功能障碍中起着重要作用。当Menin缺乏时, mTORC1被激活,并通过糖酵解系统和谷氨酰胺降解增强氧化磷酸化,导致CD8T细胞功能障碍。此外, 谷氨酰胺代谢中间产物α酮戊二酸有助于维持mTORC1激活和促进细胞衰老(SA-β-gal活性增强)。谷氨酰 胺-α-酮戊二酸通路在诱导CD8T细胞功能障碍中发挥重要作用,并发现Menin有抑制T细胞衰老的可能性。

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

关联产品

 

产品用途 产品名称
货号
细胞衰老检测试剂盒 (荧光显微镜 / 流式细胞仪用)  Cellular Senescence Detection Kit – SPiDER-βGal SG03
细胞衰老检测试剂盒 (荧光酶标仪用) Cellular Senescence Plate Assay Kit – SPiDER-βGal SG05
JC-1 线粒体膜电位检测试剂盒  JC-1 MitoMP Detection Kit MT09

日本同仁化学α-Ketoglutarate Assay Kit-Fluorometric货号:K261- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

α-Ketoglutarate Assay Kit-Fluorometric货号:K261
α-酮戊二酸(α-KG)检测试剂盒(荧光法)
α-Ketoglutarate Assay Kit-Fluorometric
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

 

● 检测结果的重现性好

● 可作为线粒体活性的指标

● 多角度了解细胞代谢变化

下载说明书
学习资料

选择规格:
100tests

现货

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

规格性状
产品概述
检测原理
检测操作
标准曲线的作成例
实验例
常见问题Q&A

规格性状

100 tests     ・Fluorescent Dye
・α-KG   Standard
・Enzyme Mix
・Coenzyme
・Assay Buffer
・lysis Solution
・Control Buffer
・ALT   Solution
・Reaction Buffer
×1
300 μl×1
×1
×1
6.5 ml×1
2 ml×1
25 ml×1
35 μl×1
5 ml×1

产品概述

α-酮戊二酸(α-KG)是TCA循环中重要的中间体。它被作为进入TCA循环的葡萄糖代谢物增加的指标以及谷氨酰胺代谢(Glutaminolysis,一种谷氨酰胺底物与α-KG反应的通路)增加的指标。α-KG在神经递质谷氨酸和γ-氨基丁酸(GABA)的产生中起着重要作用,不仅如此它还担负着一定的清除细胞内的活性氧的功能,是非常重要的细胞代谢指标之一。

检测原理

α-Ketoglutarate Assay Kit-Fluorometric可以定量检测α-酮戊二酸(α-KG)。通过检测反应生成的试卤灵(Resorufin)的荧光(Ex:530 – 560 nm、Em:580 – 600 nm)对细胞内的α-KG进行定量。另外,本试剂盒还可以通过使用96孔板进行多样品检测。

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

检测操作

整个操作过程,从细胞的前处理到荧光酶标仪检测,只需要按照操作说明书的步骤添加试剂即可检测细胞内α-酮戊二酸(α-KG)的浓度。而且,本试剂盒专门针对同类型检测方法中普遍存在的结果重现性差的问题进行了优化,即使是第一次做α-KG检测实验的科研人员也可以放心使用。

► 结果重现性高的两个秘诀

1) 样品的前处理

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

同类型的检测试剂盒在样品前处理时需要微量的pH调节、过滤膜过滤等操作,这是导致结果重现性差的原因之一。而同仁化学研究所的α-KG检测试剂盒,只需要按照说明书添加试剂,可以大幅减少前处理过程中产生的操作误差。

2) α-Ketoglutarate的检测

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

其他检测试剂盒使用与上图相同的原理,但是由于①和②的两步反应同时在96孔板里进行,这是造成误差的另一个重要原因。而同仁化学研究所的试剂盒将这两步反应分开进行,进一步降低了误差。

标准曲线的作成例

本试剂盒附带α-KG的标准品,可以通过制作标准曲线来定量的检测样品中的α-KG浓度。如果样品中的α-KG浓度高于20 μmol/l,请预先稀释样品再检测。

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

实验例

Doxorubicin(DOX)刺激引起的细胞内代谢变化

阿霉素(Doxorubicin, DOX)可以作用于 细胞周期的G2/M期,停止细胞的增殖并且细胞衰老,利用DOX作用于A549细胞,会导致胞内α-KG浓度增加。另外通过SG 03 Cellular Senescence Detection Kit – SPiDER-βGal检测细胞衰老、C548 Cell Cycle Assay Solution Deep Red / C549 Cell Cycle Assay Solution Blue检测细胞周期、MT09 JC-1 MitoMP Detection Kit检测线粒体膜电位的结果如下:

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

 

α-Ketoglutarate Assay Kit-Fluorometric货号:K261α-Ketoglutarate Assay Kit-Fluorometric货号:K261

Sulfasalazine(SSZ)引起的细胞内代谢变化

Sulfasalazine(SSZ)可以抑制细胞的胱氨酸/谷氨酸转运体(xCT)。用SSZ刺激A549细胞后,细胞内的α-KG、ATP、GSH、细胞放出的谷氨酸等变化用下列方法进行了检测。结果发现,SSZ刺激后细胞内的ATP、谷胱甘肽(GSH)、谷氨酸的放出量均减少,而细胞内的α-KG和ROS水平增加。α-Ketoglutarate Assay Kit-Fluorometric货号:K261

<使用产品>

・细胞内ATP:CK18 Cell Counting Kit-Luminescence

・细胞内GSH:G263 GSSG/GSH Quantification Kit II

・细胞内ROS:R252 ROS Assay Kit -Highly Sensitive DCFH-DA-

・胞外谷氨酸:G269 Glutamate Assay Kit-WST

 

 

<实验条件>

细胞:A549细胞(1 x 106 cells) 暴露时间: 48 h

 

α-Ketoglutarate Assay Kit-Fluorometric货号:K261α-Ketoglutarate Assay Kit-Fluorometric货号:K261

α-Ketoglutarate Assay Kit-Fluorometric货号:K261α-Ketoglutarate Assay Kit-Fluorometric货号:K261α-Ketoglutarate Assay Kit-Fluorometric货号:K261

参考文献) Shogo Okazaki et al., “Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma”. Cancer Sci., 2019, doi:10.1111/cas.14182.

NASH诱导小鼠的肝脏组织的代谢变化

NASH(非酒精性脂肪肝)的病变组织中有ATP、α-KG、NAD的量减少的特点。使用4周龄的高脂肪食物投喂(引发NASH)的1型糖尿病模型小鼠(STAM模型)的肝脏组织,检测其中的ATP、α-KG、NAD水平的变化。结果显示,NASH诱导后10周龄的小鼠组中ATP、α-KG、NAD的浓度降低。

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

※详细的实验步骤请参考FAQ“是否有检测组织的实验例

 

<使用产品>

 

・组织内ATP:CK18 Cell Counting Kit-Luminescence

・组织内NAD:N509 NAD/NADH Assay Kit-WST

 

<实验参考文献>

 

ATP Francesco   Bellanti, et al., “Synergistic   interaction of fatty acids and oxysterols impairs mitochondrial function and   limits liver adaptation during nafld   progression”, Redox Biology, 2018, 15, 86-96.
α-KG Jianjian   Zhao, et al., “The   mechanism and role of intracellular α-ketoglutarate reduction in hepatic   stellate cell activation”, Bioscience Reports, 2020, 40, (3).
Ali Canbay, et al., “L‑Ornithine   L‑Aspartate (LOLA) as a Novel Approach for Therapy of Non‑alcoholic Fatty   Liver Disease”, Drugs, 2019, 79, 39-44.
NAD Jinhan   He, et al., “Activation   of the Aryl Hydrocarbon Receptor Sensitizes Mice to Nonalcoholic   Steatohepatitis by Deactivating Mitochondrial Sirtuin Deacetylase   Sirt3”, Mol.   and Cell. Biol., 2013, 33, (10),   2047-55.

常见问题Q&A

Q1:每个试剂盒可以检测所少个样品?
A1:如果标准曲线和样品都采用3个复孔来计算,可以检测12个样品。具体的96孔板的样品孔排列实例请见说明书。

 

Q2:是否可以用黑色孔板以外的孔板(透明板或白色板)?
A2:用透明板或白色板无法准确的绘制标准曲线,请使用黑色96孔板进行实验

 

Q3:检测时样品没有显色,可能的原因有哪些?
A3:本试剂盒对α-KG的检测范围是0.2 μmol/l以上,样品中的α-KG浓度如果低于0.2 μmol/l无法检测出来。可以尝试降低样品前处理时的稀释倍率。
Q:配置好的Working Solution能否保存?
A:配置好的Working solution无法保存,请现配现用。另外,Working solution遇光不稳定,配制好后请用铝箔纸包裹避光。※避光、室温的条件下可保存2小时左右。
Q:检测样品是否可以保存?
A:操作说明书上的“—定量细胞内α-KG的样品制备—”的步骤5中得到的前处理样品在-20℃可以保存10天。冷冻保存后的样品会发生沉淀,请离心后取上清作为检测样品。※加入20 μl Lysis solution, 吹打混匀后8,000xg离心10 min,取上清。
Q:是否有组织样品的检测实例?
A:有小鼠肝脏组织的检测实例。

具体的实验步骤如下:

 

碱性提取法提取的肝脏样品中的代谢指标检测

 

1.取大约100 mg小鼠肝脏组织样品加至500μl预冷的0.5 mol/ KOH水溶液中。

※必须使用经过灌流操作完全脱血的组织样品,否则残留的血液会影响检测结果。

2.用Dounce型组织研磨器研磨肝脏组织。

3.将研磨后的样品回收至微管中,用500μl预冷的0.5 mol/ KOH水溶液清洗研磨器,并将清洗后的液体也

一起转移到回收样品的微管中(共约1 ml)。

4.向回收样品的微管中加入1 ml预冷的超纯水,充分混合后在冰浴上静置5 min(共约2 ml)。

※由于溶液的粘性较高,有时会出现离心后难以分离的情况。此时,用25 g左右的细针头注射器不断

吸取/推出(大约20-30次),直到可以顺畅的吹打溶液为止。

5.离心机12,000xg,4 ℃离心5 min。

α-KG检测用样品的制备

 

6.取900μl上一步操作(步骤5)得到的溶液,加入200μl 1mol/l KH2PO4水溶液进行中和,混匀后在冰浴上

静置5 min。

7.离心机12,000xg,4 ℃离心5 min,取1 ml上清液至新的微管中作为检测样品。

 

<检测时的注意事项>

※组织提取的样品无法保存,请在当天内完成检测。

※枪头中残留的样品溶液时造成误差的原因之一,吸取样品溶液时尽量缓慢,减少枪头中残留的样品溶液。

※在稀释标准品和样品的时候,使用0.5 mol/l KOH水溶液和1mol/l KH2PO4水溶液按照9:5比率混合的溶液。

 

<检测实例>

诱导非酒精性脂肪肝的小鼠肝脏组中α-KG量的变化

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

日本同仁化学NADP/NADPH Assay Kit-WST试剂盒货号:N510- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

NADP/NADPH Assay Kit-WST试剂盒货号:N510
NADP/NADPH检测试剂盒
NADP/NADPH Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 数据可靠,不会与NAD+及NADH反应

● 只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

● 享有显色底物WST专利

选择规格:
100 tests

现货

NADP/NADPH Assay Kit-WST试剂盒货号:N510

NADP/NADPH Assay Kit-WST试剂盒货号:N510

产品解说
活动进行中
试剂盒内含
概述
原理
技术资料
操作步骤
实验例
常见问题Q&A
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    Lactate Assay Kit-WST    乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

试剂盒内含

NADP/NADPH Assay Kit-WST试剂盒货号:N510

概述

烟酰胺腺嘌呤二核苷酸磷酸(NADP) 是磷酸戊糖途径(一种细胞代谢途径)反应中一种重要的辅因子。NADP以氧化态NADP+和还原态NADPH的形式存在于细胞中。NADPH不光对脂肪酸、胆固醇而且对还原型谷胱甘肽的生成至关重要。另外最近的研究表明,NADP+/NADPH通过限制碳水化合物的摄入来延长寿命与NADP+/NADPH有很大关联。

NADP/NADPH Assay Kit-WST能定量检测细胞中总NADP+/NADPH、NADPH和NADP+的量,并计算它们的比值。细胞内NADPH水平可以用试剂盒内的Extraction Buffer裂解细胞后加热进行定量检测。而细胞内的NADP+水平则可以通过总NADP+/NADPH减去NADPH的量计算得到。

原理

NADP/NADPH Assay Kit-WST试剂盒货号:N510

技术资料

分别检测NADP+和NADPH

NADP/NADPH Assay Kit-WST试剂盒货号:N510

分别测定NADP+和NADPH的操作步骤

*只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

用试剂盒内的提取缓冲液及去除蛋白质用的微量管,能简便地制备细胞裂解液。 通过加热细胞裂解液能单独检测细胞内NADPH量,而细胞内的NADP+量则可以通过总NADP+/NADPH量减去NADPH量的计算得到。

在本试剂盒中,当n=3时,可以测量12个样品和8个标准样品。使用超过12个样品时,您需要准备单独的超滤管。

使用NADP+/NADPH作为标记的研究

NADP/NADPH Assay Kit-WST试剂盒货号:N510

检索来源:Google Scholar

检索关键词:

NADP/NADPH:“NADP/NADPH”

线粒体:”NADP/NADPH”Mitochondria

癌:”NADP/NADPH”Cancer

氧化应激:”NADP/NADPH”Oxidative Stress

孔板检测中数据的可靠性

通过同时检测试剂盒内的标准溶液,可以对浓度在0.01-1 μmol/l的总NADP+/NADPH和NADPH进行定量。如果样品中的总NADP+/NADPH的浓度>1 μmol/l,可以通过稀释样品来调节。实验证实本试剂盒(NADP/NADPH Assay Kit-WST)不会与NAD+及NADH反应。

NADP/NADPH Assay Kit-WST试剂盒货号:N510

操作步骤

(1)按下图,在每孔中分别加入50 μl的标准液和样品溶液。

※为了获得准确的数据,建议每个样品做3个复孔。

NADP/NADPH Assay Kit-WST试剂盒货号:N510

 

(2)在每孔中加入50 μl Working Solution。

※由于在加入Working Solution后酶会立刻反应,请用多通道移液器以减少由于加液时间延迟而导致的实验误差。

(3)在37°C培养60 min。

※培养时请密封培养板,以防止液体蒸发。

(4)用酶标仪在450 nm处检测吸光度。

(5)用标准曲线测定样品中总NADP+/NADPH和NADPH的量。

※如果原样品在检测前已稀释,可用稀释倍率乘以检测的数值。

※NADP+的量可用下列计算公式计算:总NADP+/NADPH-NADPH的量计算得到。

NADP+=总NADP+/NADPH-NADPH

实验例

细胞样品检测实验例 (加入抗癌药物Doxorubicin)

向Jucket细胞中 (3×106 cells)加入终浓度为500 nmol/l的Doxorubicin (Dox),在培养24 h后检测NADP+/NADPH 比值和还原型/氧化型谷胱甘肽的比值(GSH/GSSG)。用本试剂盒检测PBS清洗后的细胞的NADP+/NADPH比值,用 GSSG/GSH Quantification Kit II (货号:G263) 检测谷胱甘肽的比值。

在细胞内加入DOX后,产生的ROS(H2O2) 破坏了DNA、DNA修复酶 (PARP*) 被激活, 并且NADP+被其消耗。为了补充不足的NADP+,NADPH氧化酶被激活,结果在数据中则会表现为NADP+的增加。与此同时还原型谷胱甘肽 (GSH) 会被产生的ROS所消耗,因此GSH/GSSG的比值会下降。

NADP/NADPH Assay Kit-WST试剂盒货号:N510

常见问题Q&A

Q1:该试剂盒可以检测多少个样本?
A1:

NADP/NADPH Assay Kit-WST试剂盒货号:N510

*所有样品均测定3次(n=3)

上表中显示了当标准样品从2 μmol/l连续稀释,作出一条共计8个点(n=3)的标准曲线时可以检测的样品数量。如果分为2次检测,由于需要重复做一条标准曲线,因此样品检测的数量会更少。

Q2:可以单独购买过滤管吗?
A2:不可以,我们不单独出售过滤管。如果需要其他耗材,可以使用市场上售卖的过滤管。
Q3:工作液稳定吗?
A3:工作液无法长期保存。请在使用前配制工作液,由于工作液对光敏感请注意避光。该工作液在室温下可避光保存4小时。
Q4:样品颜色没有变化,是什么原因?
A4:样品中的NAD含量可能低于使用此试剂盒可测定的检测限度,在这种情况下,请增加细胞数,或者如果检测样品被稀释,则在检测前降低稀释比例。

参考文献

编号 文献 IF
1 Order-of-magnitude   enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer   membrane deprivation 2022 17.7
2 Targeted   therapy for drug-tolerant persister cells after imatinib
treatment for gastrointestinal stromal tumours
2021 9.1
3 Impact   of anti-diabetic sodium-glucose cotransporter 2 inhibitors on tumor growth of   intractable hematological malignancy in humans 2022 7.4
4 Chemical   Triggering Cyanobacterial Glycogen Accumulation: Methyl Viologen Treatment   Increases Synechocystis sp. PCC 6803 Glycogen Storage by Enhancing Levels of   Gene Transcript and Substrates in Glycogen Synthesis 2022 4.9
5 Glucose   Limitation Sensitizes Cancer Cells to Selenite-Induced Cytotoxicity via   SLC7A11-Mediated Redox Collapse, Cancers (Basel),2022, 14(2):345 2022 4.4
6 Inhibition   of NAMPT markedly enhances plasma-activated medium-induced
cell death in human breast cancer MDA-MB-231 cells
2019 4.1
7 Metabolomic   approach to characterize the metabolic phenotypes and varied response to   ouabain of diffuse large B-cell lymphoma cells 2021 2.9
8 Effect   of Phosphoribosyltransferase Down-regulation on Malignant Glioma Cell   Characteristics 2020 2.5

日本同仁化学NAD/NADH Assay Kit-WST试剂盒货号:N509- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

NAD/NADH Assay Kit-WST试剂盒货号:N509
NAD/NADH检测试剂盒
NAD/NADH Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 数据可靠,不会与NADP及NADPH反应

● 同一样品可以用Lactate Assay Kit-WST(货号:L256)测定上清液中乳酸含量

● 只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

● 享有显色底物WST专利

选择规格:
100 tests

现货

NAD/NADH Assay Kit-WST试剂盒货号:N509

NAD/NADH Assay Kit-WST试剂盒货号:N509

产品解说
活动进行中
试剂盒内含
概述
原理
技术情报
操作步骤
常见问题Q&A
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测  

NO.4.    Lactate Assay Kit-WST     乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

试剂盒内含

NAD/NADH Assay Kit-WST试剂盒货号:N509

概述

烟酰胺腺嘌呤二核苷酸(NAD)是参与糖酵解、电子转移系统和TCA循环等细胞主要代谢途径氧化还原反应的重要辅助因子。NAD以氧化型NAD+和还原型NADH的形式存在于细胞中。维持适当的NAD+和NADH水平对细胞功能至关重要。此外最近的研究表明NAD+水平的下降与衰老相关,NAD+的量被认为是衰老相关研究的一个标志。

NAD/NADH检测试剂盒可以定量细胞中NAD+/NADH、NADH和NAD+的量,并测量它们的比值。细胞内NADH水平可以通过试剂盒内含的Extraction Buffer裂解细胞并在加热后选择性地定量检测。而细胞内的NAD+水平则可以通过总的NAD+/NADH总量减去NADH量计算得到。

原理

NAD/NADH Assay Kit-WST试剂盒货号:N509

技术情报

NAD+和NADH的分别检测

NAD/NADH Assay Kit-WST试剂盒货号:N509

分别测定NAD+和NADH的操作步骤

*只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

用试剂盒内的提取缓冲液及去除蛋白质用的微量管,能简便地制备细胞裂解液。通过加热细胞裂解液能单独检测细胞内的NADH量。而细胞内的NAD+量则可以通过总NAD+/NADH量减去NADH量的计算得到。

在本试剂盒中,当n=3时,可以测量12个样品和8个标准品。当使用超过12个样品时,您需要准备单独的微量管。

使用NAD+/NADH作为指标的研究

细胞中NAD+和NADH的量被评估为重要的代谢指标,用于了解受药物管理和基因重组影响的癌细胞和线粒体功能。最近已经明确了长寿相关的受体与NAD+的含量密切相关。越来越多的人将其评估为肥胖,糖尿病和细胞分化等生物学状况的标志物。

NAD/NADH Assay Kit-WST试剂盒货号:N509

检索来源:Google Scholar

检索关键词:

NAD/NADH    :  “NAD/NADH”

线粒体             :“NAD/NADH”Mitochondria

癌                    :“NAD/NADH”Cancer

肥胖                 :“NAD/NADH”Obesity

孔板检测中数据的可靠性

可以通过同时测量该试剂盒中包含的标准溶液来进行定量分析。如果样品中NAD+/NADH的总含量高于2 μmol/l,则可以通过稀释样品进行评估。在下面的实验中,使用细胞数相差2倍的HeLa细胞,来确定NAD+和NADH的数量和比率。

 

NAD/NADH Assay Kit-WST试剂盒货号:N509

使用增殖培养的HeLa细胞(2.5×105,5.0×105个细胞),从标准曲线中得到细胞内NAD+和NADH的量。最终NAD+的量和NADH的量会随着细胞数而改变,但是即使细胞数改变,NAD+和NADH量的比率也不变。

经确认,将2-Deoxy-D-glucose加入到HeLa 细胞后,代谢活性发生了变化。

用乳酸检测试剂盒检测的实验例

NAD/NADH Assay Kit-WST试剂盒货号:N509

向HeLa细胞(1×106细胞)中加入2-Deoxy-D-glucose,终浓度为6 mmol/l,培养24小时后测定乳酸量和NAD+/NADH比。用Lactate Assay Kit-WST(货号:L256)测定上清液中乳酸含量,去除上清后用本试剂盒检测细胞中的NAD+/NADH比。

最终加入2-Deoxy-D-glucose抑制了细胞内糖酵解系统,并导致乳酸量的减少和NAD+/NADH比率的增加。

实验例:NASH诱导小鼠肝脏组织中代谢的变化

非酒精性脂肪肝炎(NASH)病变导致组织中ATP、α-酮戊二酸(α-KG),已知NAD量减少。使用从4周龄开始进行高脂肪饮食处理   (NASH诱导)的1型糖尿病模型小鼠(STAM模型)的肝脏组织α-测量了KG、NAD量。其结果,在NASH诱导后10周龄小鼠组织

非酒精性脂肪肝炎(NASH)病变导致组织中ATP、α-酮戊二酸(α-KG),已知NAD量减少。使用从4周龄开始进行高脂肪饮食处理 (NASH诱导)的1型糖尿病模型小鼠(STAM模型)的肝脏组织α-测量了KG、NAD量。其结果,在NASH诱导后10

中α-确认KG、NAD量减少。

NAD/NADH Assay Kit-WST试剂盒货号:N509

 

<使用产品>

・组织内ATP:ATP Assay Kit-Luminescence(产品货号:A550)

・组织内α-KG:α-Ketoglutarate Assay Kit-Fluorometric(产品货号:K261)

・组织内NAD:NAD/NADH Assay Kit-WST(产品货号:N509)

<実験参考文献>

ATP  Francesco Bellanti, et al., “Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression”, Redox Biology, 2018, 15, 86-96..

α-KG   Jianjian Zhao, et al., “The mechanism and role of intracellular α-ketoglutarate reduction in hepatic stellate cell activation”, Bioscience Reports, 2020, 40, (3).

Ali Canbay, et al., “L‑Ornithine L‑Aspartate (LOLA) as a Novel Approach for Therapy of Non‑alcoholic Fatty Liver Disease”, Drugs, 2019, 79, 39-44.

NAD   Jinhan He, et al., “Activation of the Aryl Hydrocarbon Receptor Sensitizes Mice to Nonalcoholic Steatohepatitis by Deactivating Mitochondrial Sirtuin Deacetylase Sirt3”, Mol. and Cell. Biol., 2013, 33, (10), 2047-55.

实验例:脂肪酸转运抑制剂引起的HeLa细胞细胞内代谢的変化

脂肪酸对膜的合成等重要,细胞的增殖不可缺少。因此,用脂肪酸转运体抑制剂处理HeLa细胞,确认了阻碍脂肪酸摄取时的细胞增殖能力及细胞内代谢(葡萄糖消耗量、Lactate释放量、NAD/NADH比率)的变化。

结果显示,细胞增殖能力下降,但葡萄糖消耗量和Lactate释放量增加,细胞内NAD+/NDH比率下降,因此确认了代谢途径向解糖类转移。

NAD/NADH Assay Kit-WST试剂盒货号:N509

 

<使用产品>

脂肪酸摄取:Fatty Acid Uptake Assay Kit (产品货号:UP07)

细胞增殖:    Cell Counting Kit-8 (产品货号:CK04)

Glucose摄取:Glucose Assay Kit-WST (产品货号:G264)

Lactate检测:Lactate Assay Kit-WST (产品货号:L256)

实验例:诱导老化引起的A549细胞的代谢移位

 

当细胞老化被诱导时,SA-β-除了出现gal的表达亢进和不可逆的细胞增殖停止的现象以外,DNA损伤积蓄了的老化细胞,由于线粒体功能的降低能源产生转移到解糖系。

因此,用Doxorubicin处理A549细胞,诱导老化时的SA-β-确认了gal表达亢进及能量产生途径(NAD量、线粒体膜电位、ATP量、Lactate释放量)的偏移。

结果发现DNA损伤,SA-β-刚度测量-β- Galactosidase)生产量增加,细胞内NAD+量下降,线粒体膜电位下降,能量生产途径从氧化性磷酸化转移到解糖系

NAD/NADH Assay Kit-WST试剂盒货号:N509

<使用产品>

DNA损伤:DNA Damage Detection Kit – γH2AX (产品货号:G265)

SA-β-gal检测:Cellular Senescence Detection Kit – SPiDER-βGal (产品货号:SG03)

NAD+量:NAD/NADH Assay Kit-WST (产品货号:N509)

线粒体膜电位:JC-1 MitoMP Detection Kit (产品货号:MT09)

糖酵解/氧化磷酸化:Glycolysis/OXPHOS Assay Kit (产品货号:G270)

操作步骤

NAD/NADH Assay Kit-WST试剂盒货号:N509

(1) 按照上图,在每孔中分别加入50 μl的标准液和样品溶液。

※为了获得准确的数据,建议每个样品做3个复孔。

(2) 在每孔中加入50 μl Working Solution。

※由于在加入Working Solution后酶会立刻反应,请用多通道移液器以减少由于加液时间延迟而导致的实验误差。

(3) 在37℃培养60 min。

※培养时请密封培养板,以防止液体蒸发。

(4) 用酶标仪在450 nm处检测吸光度。

(5) 用标准曲线测定样品中总NAD+/NADH和NADH的量。

※如果原样品在检测前已稀释,可用稀释倍率乘以检测的数值。

※NAD+的量可用总NAD+/NADH的量-NADH的量计算得到

NAD+= 总NAD+/NADH-NADH

NAD/NADH Assay Kit-WST试剂盒货号:N509

常见问题Q&A

 

Q1:试剂盒可以测量多少个样本?
A1:

NAD/NADH Assay Kit-WST试剂盒货号:N509

*所有样品均测定3次(n=3)

上表中显示了当标准样品从2 μmol/l连续稀释,作出一条共计8个点(n=3)的标准曲线时可以检测的样品数量。如果分为2次检测,由于需要重复做一条标准曲线,因此样品检测的数量会更少。

Q2:是否可以使用450 nm以外的滤光片进行测量?
A2:也可以使用490 nm的滤光片,但是吸光度会低于在450 nm处的吸光度。当用不同滤光片检测时,校准曲线如下:

NAD/NADH Assay Kit-WST试剂盒货号:N509

Q3:可以单独购买过滤管吗?
A3:不可以,我们不单独出售过滤管。如果需要其他耗材,可以使用市场上售卖的过滤管。
Q4:工作液稳定吗?
A4:工作液无法长期保存。请在使用前配制工作液,由于工作液对光敏感请注意避光。该工作液在室温下可避光保存4小时。
Q5:样品颜色没有变化,是什么原因?
A5:样品中的NAD含量可能低于使用此试剂盒可测定的检测限度,在这种情况下,请增加细胞数,或者如果检测样品被稀释,则在检测前降低稀释比例。

Q6:有使用组织的实验例子吗?

 

A6:我们已经用小鼠肝组织测量了NAD/NADH和ATP,有关实验操作的更多信息,请参见下文。

碱性提取法提取肝脏代谢指标

1.每100毫克小鼠肝脏500毫升500摩尔/升KOH的冷水。

请务必将纸巾彻底沥干。残余血液会影响测量。

2.它被向下型均化器粉碎。

*请去冰浴。

3.用500ml冷的0.5mol/l KOH水溶液共同洗涤用于破碎的容器,以匹配管中的样品。(共1毫升)

4.向样品管中加入1毫升冷的超纯水。(共2毫升)如果溶液的粘度高,操作后可能难以分离离心机。

在这种情况下,将25g(针的针数)的细针应用于注射器,并混合(20-30次),直到样品溶液顺利放入注射器。

5.在5000 x g,4°C下离心5分钟,上清液回收到两个900 mm L的样品管中。1个NAD/NADH测量和另一个用于ATP测量。NAD/NA

 

 

NAD/NADH测量样品的制备

将0.5mol/L KOH水溶液和1mol/L KH2PO4混合制备稀释溶液。KH2PO4水溶液,比例为9:5。

 

6.将样品转移到MWCO 10K膜沉积管中,并在15000xg下离心20分钟。

*如果溶液超过200克或更多,请延长离心时间。

7.将所得滤液加入1.5 ml微管μ中,转移总NAD+/NADH含量和NADH量样品。

8.NADH量测量样品在60°C下孵育60分钟,将样品冷却至室温。

9.中和完成后,加入1mol/L的KH2PO4。22μL放入装有总NAD+/NADH量和制备后NADH量测量样品的管中,

中和溶液,加入78ml稀溶液(KOH和KH2PO4),混合混合物,将样品用作测量样品(总计200ul)。

<测定例>

NASH诱导小鼠肝脏组织中NAD量的变化

NAD/NADH Assay Kit-WST试剂盒货号:N509NAD/NADH Assay Kit-WST试剂盒货号:N509

 

Q7:测量样品可以保存吗?

A7.可以保存。使用说明书(1.测定用样品的调制的操作6)的溶液,在冷冻(-20℃)下可以保存3周。

参考文献

编号 文献 IF
1 Restoring   NAD+ by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and   UVB-irradiated epidermal keratinocytes 2021 6.8
2 Rewired   Cellular Metabolic Profiles in Response to Metformin under Different Oxygen   and Nutrient Conditions, International Journal of Molecular Sciences,2022,   23(2):989 2022 5.9
3 SIRT3-Mediated   SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells,   Annals of Surgical Oncology,2021, 28(8):4720-4732 2021 5.3
4 Nicotinamide   Attenuates the Progression of Renal Failure in a Mouse Model of   Adenine-Induced Chronic Kidney Disease 2021 5.1
5 Impact   of Nuclear De Novo NAD+ Synthesis via Histone Dynamics on DNA Repair during   Cellular Senescence To Prevent Tumorigenesis 2022 5.1
6 Role   of pyruvate in maintaining cell viability and energy production under   high-glucose conditions 2021 4.9
7 Kynurenine,   3-OH-kynurenine, and anthranilate are nutrient metabolites that alter H3K4   trimethylation and H2AS40 O-GlcNAcylation at hypothalamus-related loci 2019 4.9
8 Porcine   placental extract increase the cellular NAD levels in human epidermal   keratinocytes 2022 4.9
9 Nicaraven   induces programmed cell death by distinct mechanisms according to the   expression levels of Bcl-2 and poly (ADP-ribose) glycohydrolase in cancer   cells 2022 4.8
10 Effects   of sirtuins on the riboflavin production in Ashbya gossypii 2021 4.8
11 SIRT7   regulates the nuclear export of NF-κB p65 by deacetylating Ran, Biochimica et   Biophysica Acta – Molecular Cell Research,2019, 1866(9):1355-1367 2019 4.7
12 Epigenetic   silencing of Lgr5 induces senescence of intestinal epithelial organoids   during the process of aging,NPJ Aging and Mechanisms of Disease,2018, 5:1 2018 4.3
13 Effect of fumaric acid on the growth   of Lactobacillus delbrueckii ssp. bulgaricus during yogurt   fermentation 2021 4.2
14 SIRT3-Mediated   SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells,   Annals of Surgical Oncology,2021, 28(8):4720-4732 2021 4.1
15 High   expression of NAMPT in adult T-cell leukemia/lymphoma and anti-tumor activity   of a NAMPT inhibitor, The European Journal of Pharmacology,2019, 865:172738 2019 3.0
16 Lactic   acid induces HSPA1A expression through ERK1/2 activation 2022 2.4
17 Contribution   of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy   metabolism and the stemness in CD133-positive HuH-7 cells, Genes to   Cells,2020, 25(2):139-148 2020 1.9

日本同仁化学Glutamate Assay Kit-WST试剂盒货号:G269- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Glutamate Assay Kit-WST试剂盒货号:G269
谷氨酸的定量检测试剂盒
Glutamate Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamate的定量

选择规格:
1set

现货

 

Glutamate Assay Kit-WST试剂盒货号:G269

Glutamate Assay Kit-WST试剂盒货号:G269

活动进行中
试剂盒内含
产品概述
原理
操作步骤
实验例
常见问题Q&A
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glutamine Assay Kit-WST    谷氨酰胺的定量检测

NO.3.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

试剂盒内含

Glutamate Assay Kit-WST试剂盒货号:G269

产品概述

谷氨酸不仅用于蛋白质和谷胱甘肽的生物合成,而且还作为神经递质发挥重要作用,谷氨酸过多被认为是引起神经退行性疾病如阿尔茨海默氏病的原因。根据文献报道,胱氨酸/谷氨酸的转运蛋白(xCT)具有吸收胱氨酸放出谷氨酸的功能,而抑制xCT会诱导细胞发生铁依赖性的死亡—铁死亡,近年来针对xCT的癌症研究越来越多。

Glutamate Assay Kit-WST是谷氨酸的定量检测试剂盒。细胞培养基中或细胞内的谷氨酸都可以通过WST的还原反应进行定量,谷氨酸定量的最低浓度为5 μmol/l。此外,本试剂盒还可以使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酸进行定量。此外,本试剂盒还包含谷氨酸标准溶液,可用于通过制作标准曲线来定量样品中谷氨酸的浓度。

 

Glutamate Assay Kit-WST试剂盒货号:G269

操作步骤

只需将细胞培养上清液或组织/细胞裂解溶液转移到孔板中,加入试剂后孵育即可。

Glutamate Assay Kit-WST试剂盒货号:G269

实验例

标准曲线的实验例:

样品中的谷氨酸浓度可通过使用该试剂盒的谷氨酸标准溶液制作标准曲线来确定。如果谷氨酸浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

Glutamate Assay Kit-WST试剂盒货号:G269

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

Glutamate Assay Kit-WST试剂盒货号:G269

铁死亡研究中谷氨酸和谷胱甘肽的检测实验例:

据报道通过弹性蛋白,抑制胱氨酸/谷氨酸转运体(xCT)造成铁依赖性的细胞死亡,即细胞铁死亡。在通过弹性蛋白处理后的A549细胞中,确认谷氨酸的释放量和细胞内谷胱甘肽的量。结果显示,通过弹性蛋白处理的细胞中谷氨酸释放的量减少,抑制胱氨酸的摄取,从而导致谷胱甘肽的量减少。

Glutamate Assay Kit-WST试剂盒货号:G269

Sulfasalazine (SSZ) 引起的细胞内代谢变化实验例:

将已知会抑制胱氨酸/谷氨酸转运体(xCT)的Sulfasalazine(SSZ)加入到A549细胞后,确认谷氨酸释放量、细胞内ATP、α-酮戊二酸(α-KG)、谷胱甘肽(GSH)以及ROS的变化。

结果显示,SSZ加入后细胞内ATP、谷胱甘肽(GSH)和谷氨酸释放量减少,细胞内α-酮戊二酸和ROS增加。Glutamate Assay Kit-WST试剂盒货号:G269

<使用产品>

· 细胞内GSH:GSSG/GSH Quantification Kit II(货号:G263)⬅电脑浏览点击品名(手机浏览点击此处)

· 细胞内ROS:ROS Assay Kit -Highly Sensitive DCFH-DA-(货号:R252)⬅电脑浏览点击品名(手机浏览点击此处)

· 细胞内ATP:ATP Assay Kit-Luminescence(货号:A550)

· 细胞内α-KG:α-Ketoglutarate Assay Kit-Fluorometric(货号:K261)

<实验条件>

细胞:A549细胞 (1 x 106 cells)  药物处理时间:48 h

Glutamate Assay Kit-WST试剂盒货号:G269

Glutamate Assay Kit-WST试剂盒货号:G269Glutamate Assay Kit-WST试剂盒货号:G269

参考文献) Shogo Okazaki et al.,”Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma”.Cancer Sci.,2019,doi:10.1111/cas.14182.

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量是多少?
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 24个样品(参照下图)

谷氨酸标准溶液和样品的96孔板排列示意图(n=3)

Glutamate Assay Kit-WST试剂盒货号:G269

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。

※Working solution配制后,避光室温条件下4 h稳定。当暴露于光线下,溶液的颜色会变成褐色。

Q3:是否可以定量D-Glutamate?
A3:该试剂盒是用于L-Glutamate定量,无法定量D-Glutamate。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酸浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解样品也可以-20°C保存1个月。 但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酸浓度可能低于检测限(5 µmol/l),谷氨酸浓度低于5 µmol/l的样品无法用该试剂盒检测。

如果待测样品被稀释,则稀释样品中含有的谷氨酸浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酸浓度调整到最低检测限以上。

Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

Glutamate Assay Kit-WST试剂盒货号:G269

参考文献

1)Cobler,L.et al.,”xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction”,Oncotarget,2018,9,32280-32297.

2)Tobias,M.et al.,”Role of GPX4 in ferroptosis and its pharmacological implication”,Free Radical Bioglogy and Medicine,2019,133,144-152.

 

3)K. Danchana, H. Iwasaki, K. Ochiai, H. Namba, T. Kaneta, “Determination of glutamate using paper-based microfluidic devices with colorimetric detection for food samples”, Microchem. J., 2022, doi:10.1016/j.microc.2022.107513.

4)Z. Xie, T. Kawasaki, H. Zhou, D. Okuzaki, N. Okada and M. Tachbana, “Targeting GGT1 Eliminates the Tumor-Promoting Effect and Enhanced Immunosuppressive Function of Myeloid-Derived Suppressor Cells Caused by G-CSF”, Front. Pharmacol., 2022, doi:10.3389/fphar.2022.873792.

日本同仁化学Glutamine Assay Kit-WST试剂盒货号:G268- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Glutamine Assay Kit-WST试剂盒货号:G268
谷氨酰胺定量检测试剂盒
Glutamine Assay Kit-WST
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamine的定量

选择规格:
1set

现货

Glutamine Assay Kit-WST试剂盒货号:G268

Glutamine Assay Kit-WST试剂盒货号:G268

产品解说
活动进行中
试剂盒内含
产品概述
原理
操作步骤
实验例
常见问题Q&A
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.3.    Glutamate Assay Kit-WST    谷氨酸的定量检测

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

试剂盒内含

Glutamine Assay Kit-WST试剂盒货号:G268

产品概述

谷氨酰胺是TCA循环的中间体α-酮戊二酸的主要来源,并且是用于核酸和其他氨基酸合成及能量产生的重要物质。根据文献报道特别是在癌细胞中,谷氨酰胺作为底物可促进Glutaminolysis的生成,而Glutaminolysis是产生α-酮戊二酸的途径之一。同时Glutaminolysis还可以消除活性氧并减少氧化型谷胱甘肽。

Glutamine Assay Kit-WST是用于定量检测谷氨酰胺的试剂盒。无论是培养基内还是细胞内的谷氨酰胺均可以通过WST的还原反应进行定量,可检测的最低浓度为5 μmol/l。此外,本试剂盒还可使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酰胺进行定量。此外,本试剂盒还包含谷氨酰胺标准溶液,可用于通过制作标准曲线来定量样品中谷氨酰胺的浓度。

Glutamine Assay Kit-WST试剂盒货号:G268

操作步骤

*向谷氨酰胺标准溶液和含有谷氨酰胺酶的样品孔中加入谷氨酰胺酶溶液,并在样品(不含谷氨酰胺酶溶液)的每个孔中加Reaction Buffer。

由下式算出检测样品中的谷氨酰胺浓度。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

Glutamine Assay Kit-WST试剂盒货号:G268

实验例

标准曲线的实验例:

样品中的谷氨酰胺浓度可通过使用该试剂盒的谷氨酰胺标准溶液制作标准曲线来确定。如果谷氨酰胺浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

Glutamine Assay Kit-WST试剂盒货号:G268

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

Glutamine Assay Kit-WST试剂盒货号:G268

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量。
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 12个样品(参照下图)

谷氨酰胺标准溶液和样品的96孔板排列示意图(n=3)

Glutamine Assay Kit-WST试剂盒货号:G268

 

*当n=3时,至少需要240 μl(每孔40 μl×6孔)。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。
Q3:是否可以定量D-Glutamine?
A3:该试剂盒是用于L-Glutamine定量,无法定量D-Glutamine。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酰胺浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解液样品也可以-20°C保存1个月。但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酰胺浓度可能低于检测限(5 µmol/l),谷氨酰胺浓度低于5 µmol/l的样品无法用该试剂盒检测。如果待测样品被稀释,则稀释样品中含有的谷氨酰胺浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酰胺浓度调整到最低检测限以上。
Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

Glutamine Assay Kit-WST试剂盒货号:G268

参考文献

1、K. Hayashima, H. Katoh, “Expression of gamma-glutamyltransferase 1 in glioblastoma cells confers resistance to cystine deprivation-induced ferroptosis”, J. Biol. Chem., 2022, doi:10.1016/j.jbc.2022.101703.

2、R. Imamura, S. Kitagawa, T. Kubo, A. Irie, T. Kariu, M. Yoneda, T. Kamba, T. Imamura, “Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD‐L1 expression by C5a”, Prostate, 2020, doi:10.1002/pros.24090.

3、S. Liu, J. Washio, S. Sato, Y. Abiko, Y. Shinohara, Y. Kobayashi, H. Otani, S. Sasaki, X. Wang and N. Takahashi, “Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions”, 2022, Int. J. Mol. Sci., doi:10.1016/j.snb.2021.130554.

4、M Chen, G Wang, Z Xu, J Sun, B Liu, L Chang, J Gu, Y Ruan, X Gao,S Song,Loss of RACK1 promotes glutamine addiction via activating AKT/mTOR/ASCT2 axis to facilitate tumor growth in gastric cancer,Cellular Oncology, 2023,doi:https://doi.org/10.1007/s13402-023-00854-1.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学Cell Counting Kit-Luminescence试剂盒货号:CK18- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Cell Counting Kit-Luminescence试剂盒货号:CK18
细胞活性(ATP检测)
ATP Assay Kit-Luminescence
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 操作简便,检测仅需10分钟

● 灵敏度高,微量细胞也可检测

● 悬浮细胞和原代细胞适合

选择规格:
200 tests
600 tests
1000 tests
2000 tests

现货

Cell Counting Kit-Luminescence试剂盒货号:CK18

Cell Counting Kit-Luminescence试剂盒货号:CK18

产品解说
活动进行中
产品原理
实验注意事项
实验操作步骤
参考文献

产品解说

 

活动进行中

订购满5000元,300元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8    细胞增殖毒性检测

NO.2.    Cytotoxicity LDH Assay Kit-WST    乳酸脱氢酶(LDH)检测

NO.3.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.4.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.5.    ROS Assay Kit -Highly Sensitive DCFH-DA-    ROS检测

产品原理

ATP是生物体内最直接的能量来源,在肌肉收缩、代谢反应、主动运输等方面被广泛使用,甚至被称作生物体内的能量货币。同仁化学研究所开发的Cell Counting Kit-Luminescence试剂盒是一种通过Luciferase来确定细胞中的腺苷三磷酸(ATP)的细胞增殖-毒性检测试剂盒。

本试剂盒只需将各试剂混合后加入孔板,10 分钟后即可检测。不需要去除培养基、清洗细胞等复杂的操作。此外,本试剂盒还有诸如发光的半衰期在3 小时以上、数据的重现性高 、兼容96孔板 、384孔板的多样品检测等诸多优点。

Cell Counting Kit-Luminescence试剂盒货号:CK18

图1. Cell Counting Kit Luminescence 检测原理

实验注意事项

检测方法:多功能酶标仪

检测结果:化学发光值

Cell Counting Kit-Luminescence试剂盒货号:CK18

注意:该试剂盒只能比较实验组对照组结果,但是不能完全定量检测

(试剂盒内不含标准品)

实验操作步骤

1. 白色 96 孔板中,每孔加入 100 μl 细胞悬液(白色 384 孔板,每孔加入 25 μl 细胞悬液)。

*为了获得更准确的检测结果,建议每个实验组至少设置三个复孔(n=3)。

2. 各孔中加入 100 μl Working solution(白色 384 孔板,每孔加入 25 μl Working solution)。

*气泡会对实验结果产生影响,如果孔中有气泡请尽量清除。 使用电动移液器时,建议使用反向吸液模式(RevPIP Mode)。

*加入 Working solution 后,建议用酶标仪的振荡混匀功能震荡 2 min。由于光照会影响检测结果,如果必须在 有光源的地方震荡,建议用铝箔纸包覆孔板。

3. 将孔板静置于温度设定在 25℃的酶标仪内 10 min。

*如果酶标仪没有温度设定的功能,请将孔板至于 25℃培养箱或 25℃左右室温下,避光培养 10 min。

*为了保证发光信号的稳定性,建议此处的培养时间不要低于 10 min。

4. 检测发光值(RLU)。

CCK-L,仪器检测实验例,详见如下:(实验例仅供参考)

细胞内ATP活性检测(CCK-L)的仪器设置

参考文献

编号 文献 IF
1 Impact   of the combined timing of PD-1/PD-L1 inhibitors and chemotherapy
on the outcomes in patients with refractory lung cancer, ESMO Open,2021,   6(2):100094
2021 6.5
2 SIRT3-Mediated   SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells   ,Annals of Surgical Oncology,2021, 28(8):4720-4732 2021 5.3
3 An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity,Cellular & Molecular Biology Letters, 2023,doi.org/10.1186/s11658-023-00461-w 2023 8.3

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297
氧消耗量检测试剂盒
Oxygen Consumption Rate(OCR) Plate Assay Kit
商品信息
储存条件:-20度保存
运输条件:室温

特点:

 

● 适用于普通荧光酶标仪

● 不需要昂贵的仪器、特殊介质和孔板

● 带OCR计算表的一体式试剂盒

下载说明书

选择规格:
100tests

现货

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

产品规格
OCR是线粒体功能的重要指标
产品概述
与现有方法比较
与石英分析仪对比
实验例:抑制线粒体电子传输链
实验例:细胞最大呼吸能力评估
实验例:不同细胞系代谢途径依赖性的比较
Q&A
参考文献

产品规格

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

OCR是线粒体功能的重要指标

由于氧主要在线粒体氧化磷酸化产生三磷酸腺苷(ATP)的过程中消耗,因此其耗氧率(OCR)是分析线粒体功能的指标。众所周知,癌细胞通过糖酵解途径产生ATP,其效率低于氧化磷酸化。在免疫细胞中,氧化磷酸化的优势是抑制抗肿瘤,而糖酵解途径的优势促进抗肿瘤作用。因此,细胞的OCR作为能量代谢的检测指标。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

产品概述

细胞外氧消耗量试剂盒包括氧气探针,其具有随着介质中氧气浓度的降低而增加荧光强度的特性,矿物油阻止氧气从空气中流入。

在用荧光酶标仪根据细胞外氧浓度测量荧光强度之后,根据Stern-Volmer方程计算细胞的OCR(自动计算表)。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

*该产品在群马大学Toshitada Yoshihara博士的指导下实现了产品化。

与现有方法比较

到目前为止,OCR测量需要昂贵的设备,如通量分析仪,实时动态检测酶标仪,以及酶标仪的功能调节。该试剂盒推荐给初此使用的人,因为它可以与常规荧光酶标仪一起使用,并附带所有必要试剂的完整包装。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

与石英分析仪对比

石英分析仪(XFe24)和本试剂盒在相同条件下(细胞类型、细胞数量和FCCP浓度)进行测量。

得到XFe24与本试剂盒相关氧消耗速度变化的数据。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

细胞种类: HepG2

细胞数: 5×10⁴ cells/well

试剂: FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone)

FCCP 浓度: 2 μmol/l

实验例:抑制线粒体电子传输链

用抗霉素刺激大鼠细胞,评估线粒体电子运输链抑制后细胞状态的变化,检测多种指标。

结果表明,电子传输链的抑制导致(1)线粒体膜电位的降低和(2)OCR的降低。此外,观察到(3)整个糖酵解途径的NAD+/NADH比率降低,这是由于丙酮酸到乳酸的代谢增加,以维持糖酵解通路;(4)由于活性氧(ROS)增加,GSH耗竭;(6)由于谷胱甘肽生物合成所需NADH减少,NADP+/NADPH比率增加。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

实验例:细胞最大呼吸能力评估

在HepG2细胞中,通过FCCP刺激后OCR值的变化来评估细胞的最大呼吸。

在FCCP浓度分别2µmol/l和4µmol/l 测量OCR。与2µmol/l相比,在4µmol/l时观察到OCR降低,表明在2µmol/l FCCP时最大呼吸。
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

 

细胞: HepG2

细胞数: 5×104 cells/well

试剂: FCCP

FCCP 浓度 2, 4 μmol/l

实验例:不同细胞系代谢途径依赖性的比较

    许多癌症细胞通过糖酵解途径产生ATP。另一方面,最近有报道称,糖酵解途径被抑制的癌症细胞,可通过增强线粒体功能将能量代谢转移到OXPHOS而达到存活的目的,代谢途径的依赖性因细胞系不同而异。

基于乳酸生成、ATP水平和OCR值,比较了两种癌症细胞HeLa和HepG2中OXPHOS和糖酵解的依赖性关系。

<通过乳酸生产和ATP水平进行评估>

我们证实了当寡霉素刺激和糖酵解途径中的 2-Deoxy-D-glucose(2-DG)抑制OXPHOS的ATP合成时,ATP和乳酸产生的变化。结果表明,HeLa细胞依赖于糖酵解,HepG2细胞依赖于OXPHOS合成ATP。

*有关结果的更多信息,请参下方的“所用技术和产品的补充信息”部分。

所用技术和产品的补充信息
<通过乳酸产生和ATP的量进行评估>

当OXPHOS在HeLa细胞中被抑制时,ATP水平保持不变(①),乳酸产生增加(②)。这表明,即使OXPHOS被抑制,糖酵解也可以被进一步激活。相反,当糖酵解被抑制时,ATP水平显著降低(③),表明能量的产生依赖于糖酵解。另一方面,当OXPHOS在HepG2细胞中被抑制时,乳酸的产生增加(④),表明细胞试图通过增强糖酵解来补偿能量的产生,但ATP水平仍然降低(⑤)。这意味着,即使糖酵解增加,ATP的产生也没有得到足够的代偿。此外,当糖酵解被抑制时,ATP水平下降更多(⑥),这表明HepG2细胞的能量产生更多地依赖于OXPHOS而不是糖酵解。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

本数据同时使用了:糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit(G270)

<OCR值评估>

使用相同数量的细胞,我们测量了当用线粒体解偶联剂FCCP刺激细胞来促进细胞耗氧量时的OCR值。结果表明,HepG2细胞比HeLa细胞具有更高的OCR值,这表明对OXPHOS的依赖性更强,这与ATP水平和乳酸产生的结果有关。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

〈实验条件〉

细胞系:HeLa、HepG2

细胞数:5×104个细胞/孔

刺激:FCCP

浓度:2μmol/l

使用:Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒(货号:E297)进行评估

Q&A

Q:本试剂盒可以检测多少样本?
A:当测试一种细胞类型的相同数量的细胞时,可以测量24个样品。

*如果实验中使用了两种以上的细胞类型或多个细胞编号,则必须准备单独的空白和对照,并且可以测量的样本数量会有所不同。

有关详细信息,请参考手册中的板布局示例。

Q:悬浮细胞有什么实验案例吗?
A:我们准备了一个大鼠细胞实验的例子。<说明>

(1) 将大鼠细胞(3.0×106细胞/ml)悬浮于RPMI培养基中作为空白3,将大鼠细胞(3.0×106细胞/ml)悬于工作溶液中作为对照或样品。将细胞接种在100µl(300000个细胞/孔)的96孔黑色透明底部微孔板中。

 

(2) 向空白1中加入100µl RPMI培养基,向空白2中加入100μl工作溶液。

 

(3) 将微孔板放置在预先设定为37°C的读板器中,孵育30分钟。

 

(4) 向空白1、空白2、空白3和对照品中加入10µl RPMI培养基。

 

(5) 将用RPMI培养基稀释的样品溶液(抗霉素或FCCP溶液)分10µl加入样品中。

 

(6) 加入样品溶液后,立即向每个孔中加入一滴矿物油。

 

(7) 将微板放置在37°C的平板读数器中,孵育5分钟。

 

(8) 在一个时间过程中,用荧光板读取器每10分钟测量一次强度,持续200分钟(Ex:500nm,Em:650nm,底部读数)。

(9) OCR值通过将获得的强度值输入下载的专用Excel计算表来计算。

每孔所需的样品和试剂数量。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Q:如何使用此试剂盒计算OCR?
A:请使用Excel计算表并遵循以下说明

 

<OCR计算程序概述>

(1) 将OCR测量获得的强度值输入计算表,使用Stern-Volmer公式自动计算氧含量(nmol)。

(2) 根据时间(min)与氧含量(nmol)的关系图,检查所有测量条件下获得的线性范围。

(3) 计算步骤(2)中确认的时间(min)和氧含量(nmol)范围内的斜率。

(4) 根据步骤(3)中计算的斜率计算OCR(pmol/min)。

有关详细信息,请参阅手册中的“分析”。

*需要计算OCR的客户请至【网站首页】-【技术支持】-【实验工具】即可找到OCR计算器

 

Q:矿物油对细胞有细胞毒性吗?
A: 当通过Cell Counting Kit-8细胞毒性测定测定时,在用矿物油处理的细胞中未观察到毒性。

 

Q:为什么使用此试剂盒需要搭配可控温的酶标仪?
A: 在添加试剂和矿物油后,将微孔板与培养箱(或加热块、恒温室等)一起孵育,酶标仪中的温差将影响OCR结果。这导致数据再现性下降。因此,请使用温度可控的酶标仪。

<常规操作>

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

步骤3、7用于悬浮细胞,步骤5、9用于贴壁细胞

<孵育环境对结果的影响>

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Q:OCR检测后如何测量细胞数
A:使用核酸探针(代码:H342)Hoechst 33342测量每个孔的细胞数,这是该方案的一个示例。

<说明>

(1) 将细胞接种到孔中进行OCR测量(液体体积:100μl/孔)。

(2) 将制备校准曲线的细胞接种到孔中(液体体积:100μl/孔)。

(3) OCR根据说明书进行测量。

(4) 向孔中加入10µl/孔的介质进行校准(使介质体积与OCR测量孔的体积对齐至110µl/孔)。

(5) 将用培养基稀释的Hoechst 33342溶液(10µg/ml)以100µl/孔的速度添加到所有孔中。

*从油的顶部添加OCR测量孔。

(6) 在37°C下培养30分钟。

(7) 用荧光板读数器(Ex:350nm,Em:461nm)测量。

(8) 制备校准曲线(X轴:细胞数量,Y轴:荧光强度),并计算用于OCR测量的孔中的细胞数量。

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Q:可以长期存储工作液吗
A 工作液不能储存,需要现配现用。
Q:氧探针或矿物油的反复冷冻和解冻是否会影响测定?
A 我们已经证实,氧气探针和矿物油的反复冻融循环对测定没有影响。
Q:对照组与实验组之间OCR没有差异,有哪些可能得原因?
A请检查以下两个实验条件。

(1) 如果在测量过程中温度发生变化,可能会影响OCR结果。请确保以下两个步骤完全按照说明书执行。

・矿物油、溶剂和稀释溶剂等溶液在使用前应预热至37°C左右。

・加入试剂和矿物油后,请使用温度可控的酶标仪进行孵育。

请参阅Q&A“为什么使用此试剂盒需要搭配可控温的酶标仪?”。

(2) 建议在最终计算前,优化单元格数据。如果细胞数量较低,实验组和对照组之间的差异也可能并不显著。

【带有细胞数和试剂处理的OCR值(预期结果图)】

 

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

参考文献

文献 研究对象 引用文献
1 细胞(HepG2) K.Saito.et al“Obesity-induced metabolic imbalance allosterically modulates CtBP2 to inhibit PPAR-alpha transcriptional activity”2023,Journal of Biological Chemistry,doi.org/10.1016/j.jbc.2023.104890
2 细胞(NIH3T3-L1) S. Oki, S. Kageyama, Y. Morioka and T. Namba, “Malonate induces the browning of white adipose tissue in high-fat diet induced obesity model”Biochem Biophys Res Commun.2023, doi:10.1016/j.bbrc.2023.08.054.
3 细胞

(Primary Hepatocyte)

S. Tsuno, K. Harada, M. Horikoshi, M. Mita, T. Kitaguchi, M. Y. Hirai, M. Matsumoto and T. Tsubo , ‘Mitochondrial ATP concentration decreases immediately after glucose administration to glucose-deprived hepatocytes’, FEBS Open Bio2023, doi:10.1002/2211-5463.13744.
  4 精子 “Arresting calcium-regulated sperm metabolic dynamics enables prolonged fertility in poultry liquid semen storage”, Scientific Reports 2023 , doi: 10.1038/s41598-023-48550-2.
5 细胞(HepG2) Takeo Nakanishi.et alAn implication of the mitochondrial carrier SLC25A3 as an oxidative stress modulator in NAFLDExperimental Cell Research.,2023,431,113740

日本同仁化学ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552
ADP/ATP比率检测试剂盒
ADP/ATP Ratio Assay Kit-Luminescence
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

●可获得稳定的ADP/ATP比值

●溶液配制后可以保存

●冷藏保存(无需解冻操作)

下载说明书

选择规格:
100tests

现货

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

产品解说
产品概述
产品文献
规格性状
检测原理
与其他公司产品比较
实验例
常见问题Q&A

产品解说

 

产品概述

通常情况下,当细胞内ATP浓度降低时,会由二磷酸腺苷(ADP)重新合成为ATP,以维持细胞内一定的ATP浓度。当产生ATP的相关代谢发生紊乱时,ADP无法再合成为ATP,ATP却不断地分解成为ADP,导致ADP/ATP的比例上升。而ADP/ATP比率的变化与细胞凋亡、细胞自噬、能量代谢等诸多途径息息相关,因此经常被作为细胞活性的指标之一检测。

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

产品文献

1、Hao Gu, Yuhui Zhu, Jiawei Yang, Ruixue Jiang, Yuwei Deng, Anshuo Li, Yingjing Fang, Qianju Wu, Honghuan Tu, Haishuang Chang, Jin Wen, Xinquan Jiang,”Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration.Advanced Science”,2023, Advanced Science, doi:10.1002/advs.202302136

规格性状

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

检测原理

本试剂盒可以检测细胞中ADP与ATP的比率。首先用萤火虫荧光素酶法检测细胞内的ATP。

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

之后用酶将细胞内的ADP全部转化为ATP,再用相同的发光原理检测ATP,即可算出细胞内ADP/ATP的比率。

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

与其他公司产品比较

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

本试剂盒的检测结果,不受ATP和ADP的总量影响,比值的结果稳定。

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

实验例

使用Staurosporine诱导细胞凋亡后,用本试剂盒检测细胞中ADP/ATP的比值。另外,用激光共聚焦显微镜和流式细胞仪检测Annexin V-FITC/PI染料标记的Staurosporine诱导凋亡的细胞。

结果显示,Staurosporine诱导后的细胞中ADP/ATP的比例明显上升。相同条件的细胞中也观察到磷脂酰丝氨酸(PS)的外翻以及细胞膜破损。说明凋亡细胞中的ADP/ATP的比率上升。

 

<ADP/ATP比的检测结果>

 

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

常见问题Q&A

Q:一个试剂盒可以检测多少个样品?
A:按照每个样品3个复孔计算,可以检测32个样品,96孔板的孔板设置请参考说明书。
Q:检测时是否可以用白色96孔板以外的孔板?
A:黑色和透明孔板都会造成发光强度的降低,透明孔板还会导致背景升高。因此建议使用白色96孔板。
Q:配制好的working solution是否可以保存?
A:本试剂盒共包含4种working solution,ADP working solution无法保存,请现配现用。其他3种的保存条件及保存时间如下:

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

Q:确定最佳细胞数的方法是什么?
A:配制梯度浓度的细胞悬液播种至孔板中,按照最终实验相同的条件进行培养。使用本试剂盒制作标准曲线(参照图1),选择呈直线性的范围,并且ADP/ATP比率(参考图2)在相对稳定的范围内进行最终实验的检测。下图的情况,最细胞数的范围是2,000~4,000个。

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

Q:发光法检测波长为多少?
A:由于是通过萤光素检测,所以检测波长为556 nm。

日本同仁化学MitoPeDPP试剂货号:M466- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

MitoPeDPP试剂货号:M466
3-[4-(Perylenylphenylphosphino)phenoxy]propyltriphenylphosphonium iodide
MitoPeDPP
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

 

● 特异性的在细胞中线粒体内聚集

● 可以检测线粒体膜内的脂质过氧化物

● 可以在488 nm和535 nm的荧光波长下进行检测

下载说明书

选择规格:
5μg*3

现货

 
铁死亡检测方案

MitoPeDPP试剂货号:M466

MitoPeDPP试剂货号:M466

产品概述
检测原理
实验例
参考文献

产品概述

MitoPeDPP是一种新型荧光染料,由于其具有三苯基膦结构,因此可以穿过细胞膜并在线粒体中聚集。

聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。由于氧化的MitoPeDPP

(Ox-MitoPeDPP) 的激发和发射波长分别是452 nm和470 nm,可以减小样品的光损伤和自发荧光,因此利用

荧光显微镜MitoPeDPP可以检测活细胞中的脂质过氧化物。

特点

1.特异性的在细胞中线粒体内聚集

2.可以检测线粒体膜内的脂质过氧化物

3.可以在488 nm和535 nm的荧光波长下进行检测

* 本产品由福冈大学化学系的Dr. Shioji开发

*由于MitoPeDPP量极少不宜看到,可以通过观察MitoPeDPP DMSO溶液的颜色是否为黄色来判断。

检测原理

MitoPeDPP可以穿过细胞膜并在线粒体中聚集。聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。

MitoPeDPP试剂货号:M466

实验例

1.MitoPeDPP和线粒体染色试剂MitoBright共同染色的实施例

在HeLa细胞中添加t-BHP(氢过氧化叔丁基),检测脂质过氧化物

波长(wavelength/band pass)

MitoPeDPP:470/40(Ex),525/50(Em)

MitoBright DeepRed:600/50(Ex),685/50(Em)

结果证实在HeLa细胞内的线粒体中,MitoPeDPP受t-BHP氧化后会发出荧光。另外通过与线粒体染色试剂(MitoBright Deep Red:MT08)的共染色,确认了MitoPeDPP的荧光是定位在线粒体中。

MitoPeDPP试剂货号:M466

2.检测添加Rotenone产生的脂质过氧化物

向HeLa细胞[μ-slide,8孔(由Ibidi制造)]中添加MitoPeDPP之后,添加Rotenone溶液并使用荧光显微镜观察。实验结果证实,添加Rotenone后,检测到细胞中产生了脂质过氧化物。

Rotenone的刺激时间:0 min(左),90 min(中),180 min(右)

MitoPeDPP试剂货号:M466

上部)荧光图,下部)明场图

3.神经细胞使用MitoPeDPP的实验例

A.荧光显微镜检测

向NIE-115细胞(小鼠神经芽细胞瘤)添加异黄素,诱导Ca2+流入细胞内,并通过MitoPeDPP的荧光染色来观察线粒体膜内的脂溶性过氧化物的产生。实验结果证实添加了异霉素的实验组相比对照组来说荧光更强。

MitoPeDPP试剂货号:M466

B. 平均荧光强度数据比较

为了量化对照组细胞和添加了离子霉素的细胞的荧光强度,对两组数据进行基于平均荧光强度的比较。

结果证实,加入离子霉素后30分钟的细胞对比对照组的细胞,观察到的荧光强度显着增加。

数据提供(Free Radical Research, in press)

MitoPeDPP试剂货号:M466

参照芝浦工业大学系统理工学院 福井浩二副教授、中村沙希[参考文献3]

4.MitoPeDPP反应的选择性

在不含细胞的反应体系中,MitoPeDPP可以与各种过氧化物如H2O2,t-BHP和ONOO- 反应,但是在细胞中,积

累在线粒体中的MitoPeDPP可以被t-BHP氧化而释放出较强荧光 (图3A),却和其它ROS或RNS反应很弱 (图3B)。

A) 在HepG2细胞中加入MitoPeDPP培养15 min,然后用100 μmol / l的t-BHP处理。

B) 在HepG2细胞中加入MitoPeDPP培养15 min后,加入ROS、RNS诱导剂。

分别加入100 μmol / l (H2O2,NO和ONOO-诱导剂)和10  μmol / l  PMA(O2-.诱导剂) 。

左边为明场图,右边为荧光图

* t-BHP:tert-Butylhydroperoxide; PMA, Phorbol myristate acetate;

SIN-1, 3-(Morpholinyl)sydnonimine, hydrochloride;

NOC 7, 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene

波长/带通滤波器:470/40 (Ex), 525 /50 (Em)

MitoPeDPP试剂货号:M466

参考文献

1) K. Shioji K, Y. Oyama, K. Okuma and H. Nakagawa, “Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria.”, Bioorg Med Chem Lett., 2010, 20, (13), 3911.

2) S. Oka, J. Leon, K. Sakumi, T. Ide, D. Kang, F. M. LaFerla and Y. Nakabeppu, “Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease”, Scientific Reports ., 2016, DOI: 10.1038/srep37889 , .

3) S. Nakamura, A. Nakanishi, M. Takazawa, S. Okihiro, S. Urano and K. Fukui, “Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: Analysis of a time-lapse live cell imaging system”, Free Radical Research., 2016, 50, (11), 1214.

4) M. Akimoto, R. Maruyama, Y. Kawabata, Y. Tajima and K. Takenaga, “Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERKdependent necroptosis”, Cell Death Dis., 2018, 9, 804.

5) M. Álvarez-Córdoba, A. Fernández Khoury, M. Villanueva-Paz, C. Gómez-Navarro, I. Villalón-García, J. M. Suárez-Rivero, S. Povea-Cabello, M. Mata, D. Cotán, M. Talaverón-Rey, A. J. Pérez-Pulido, J. J. Salas, E. M. Pérez-Villegas, A. Díaz-Quintana, J. A. Armengol, J. A. Sánchez-Alcázar , “Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation.”, Mol. Neurobiol. ., 2019, 56, (5), 3638.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05
线粒体内单线态氧荧光探针试剂
Si-DMA for Mitochondrial Singlet Oxygen Imaging
商品信息
储存条件:-20度保存,避光
运输条件:室温
分子式:

C35H37ClN2Si

分子量:

549.22

特点:

 

● 能够对活细胞进行荧光成像

● 对单线态氧的高选择性

下载说明书
产品文献
SDS下载

选择规格:
2μg

现货

 
线粒体检测方案

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

产品概述
原理
荧光特性
反应特异性
实验例
常见问题Q&A
参考文献

产品概述

       单线态氧(Singlet Oxygen,1O2)是一种具有强氧化性的活性氧(ROS),是造成皮肤斑点及皱纹的重要因素。在化妆品等研究中,去除单线态氧是重要的研究目的。在癌症研究领域,单线态氧在光动力疗法(PDT:一种采用光敏药物和激光活化治疗肿瘤的新兴抗癌疗法)中起到关键作用。因此检测活细胞内的单线态氧对于了解PDT的抗癌机理至关重要。但是现有的荧光探针由于不能穿透细胞膜,所以无法用于活细胞检测。

Majima等人合成了一种由含硅罗丹明和蒽环构成的新型远红外荧光探针Si-DMA,分别作为发色团和单线态氧反应位点。当存在单线态氧时会在Si-DMA的蒽环部位生成内过氧化物,Si-DMA的荧光强度会增强1)。在7种不同活性氧中,Si-DMA能够特异性地检测单线态氧(图3)。另外在用5-氨基乙酰丙酸(5-ALA,一种血红素前体)处理细胞后,Si-DMA可以实时观察到线粒体中原卟啉IX产生单线态氧的变化情况(图4)。

原理

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

图1. Si-DMA的细胞染色原理

荧光特性

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

图2. Si-DMA与单线态氧反应后的激发和发射光谱

反应特异性

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

图3. Si-DMA对各种ROS的选择性

实验例

实验例1  荧光显微镜观察用5-氨基乙酰丙酸 (5-ALA) 处理后的HeLa细胞中的单线态氧

1. 接种200 μl HeLa细胞 (2.4×105 cells/ml) 在μ-slide 8孔板 (ibidi) ,培养基为DMEM (10%FBS,1%青霉素-链霉素),

在37℃ 5% CO2培养箱中过夜培养。

2. 用200 μl Hanks’ HEPES 缓冲液洗涤细胞2次。

3. 在μ-slide 8孔板中加入200 μl 含5-ALA的Hanks’ HEPES 缓冲液 (150 μg/ml),在37℃ 5% CO2培养箱中培养4 h。

4. 用Hanks’ HEPES 缓冲液洗涤细胞2次。

5. 加入200 μl Si-DMA工作液(40 nmol/l), 在37℃ 5% CO2培养箱中培养45 min。

6. 用200 μl Hanks’ HEPES缓冲液洗涤细胞2次。

7. 加入200 μl Hanks’ HEPES缓冲液,并用荧光显微镜进行观察。

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

Si-DMA检测5-ALA处理的HeLa细胞线粒体中的单线态氧的荧光成像

5-ALA处理过的HeLa细胞经过2.5 min照射后,Si-DMA的荧光增强,因此Si-DMA可以用于实时监测线粒体中原卟啉IX产生的单线态氧。

滤镜 (波长/带通型滤光片)

荧光成像:600±25 nm (Ex), 685±25 nm (Em)

实验例2  线粒体中的单线态氧检测 

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

用终浓度为50 μmol/l的过氧化氢和终浓度为50 μmol/l的次氯酸刺激或不刺激HeLa细胞,用Si-DMA检测到细胞中产生的单线态氧。和线粒体染料(MitoBright Green: MT06)共染,特异性地在线粒体中检测到了单线态氧。

波长(激发波长/发射波长)

Si-DMA: 600±25 nm/685±25 nm

MitoBright Green: 488 nm/501-563 nm

实验例3  观察用H2O2处理Primary Hepatocytes细胞后产生的单线态氧

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

Si-DMA检测用H2O2刺激Primary Hepatocytes细胞后产生的单线态氧荧光成像

实验条件:

用10 mM H2O2刺激Primary Hepatocytes 20 min。

细胞数量:1×104/dish

容器:Nest 15 mm共聚焦培养皿801002

染色条件:在37℃ 5% CO2培养箱中染色45 min

Si-DMA工作液浓度:100 nmol/l

检测仪器:激光共聚焦显微镜

仪器品牌:Leica,Cambridge, UK

仪器型号:BMI-6000

Ex:600 nm,Em: 685 nm

(以上数据由东方肝胆外科医院信号转导实验室友情提供)

常见问题Q&A

Q1、本试剂盒与现有方法相比有什么优势?
A1:本试剂盒的优点是“能够对活细胞进行荧光成像”和“对单线态氧的高选择性”。在操作说明中有详细的实验数据。
Q2、DMSO Stock Solution的稳定性怎么样?
A2:DMSO Stock Solution配制后在-20℃及避光条件下可以保存大约1个月,建议根据每次的用量进行分装保存。
Q3、配制Working Solution可以用Hanks’ HEPES以外的缓冲液吗?
A3:还可以用HBSS缓冲液。
Q4、Working Solution的稳定性怎么样?
A4:Working Solution不稳定,请在配制当天使用。

参考文献

1、S. Kim, T. Tachikawa, M. Fujitsuka, T. Majima, “Far-Red Fluorescence Probe for Monitoring Singlet Oxygen during Photodyanamic Therapy”, J. Am. Chem. Soc., 2014, 136 (33), 11707.

2、S. Bekeschus, A. Mueller, U. Gaipl, KD. Weltmann, “Physical plasma elicits immunogenic cancer cell death and mitochondrial singlet oxygen”, TRPMS., 2017, 99, DOI:10.1109/TRPMS.2017.2766027.

3、Y. D. Riani, T. Matsuda, K. Takemoto and T. Nagai, “Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation “, BMC Biol, 2018, 16, 50.

4、T. Guo, T. Liu, Y. Sun, X. Liu, R. Xiong, H. Li, Z. Li, Z. Zhang, Z. Tian, and Y. Tian, “Sonodynamic therapy inhibits palmitateinduced beta cell dysfunction via PINK1/ Parkin-dependent mitophagy”, Cell Death Dis., 2019, 10, 457.

5、K. Murotomi, A. Umeno, S, Sugino and Y. Yoshida. , “Quantitative kinetics of intracellular singlet oxygen generation using a fluorescence probe”, Sci Rep, 2020, 10, 10616.

6、Y. Fujita, M. Iketani, M. Ito, I. Ohsawa, “Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts”, 2022, doi:10.1016/j.exger.2022.111866.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学铁离子荧光探针—Mito-FerroGreen货号:M489- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

铁离子荧光探针—Mito-FerroGreen货号:M489
铁死亡荧光试剂 (Fe2+荧光法)
Mito-FerroGreen
商品信息
储存条件:-20度保存,避光
运输条件:室温

特点:

 

● 对二价铁离子的高度选择性和高灵敏度

● 适用于通用滤光片

下载说明书
产品文献
宣传资料下载

选择规格:
50μg*2

现货

铁死亡检测方案

铁离子荧光探针—Mito-FerroGreen货号:M489

铁离子荧光探针—Mito-FerroGreen货号:M489

产品概述
测定原理
产品特点
实验例
参考文献
常见问题Q&A
规格性状

产品概述

研究证实铁是生物体内量最多的过渡金属元素。其参与多种生理活动。近几年,细胞内的游离铁离子由于具有很高的反应性,和细胞损伤、死亡有一定的关联而得到了越来越多的关注。在细胞内游离铁离子以稳定的Fe2+和 Fe3+形式存在。从细胞内的还原环境,金属转运体及Fe2+的水溶性考虑,认为揭示细胞内Fe2+的行为比Fe3+更重要。Mito-FerroGreen是一种新型荧光探针,用于检测线粒体 (铁硫簇和血红素蛋白的合成场所) 内亚铁离子Fe2+。

该产品已在岐阜药科大学药物化学实验室的 永澤秀子 和 平山祐 博士的指导下开发。Mito-FerroGreen和Fe2+反应后的荧光强度上升不可逆,与Fluo-3(货号:F019)这类可以实时监测钙离子的荧光探针有所不同。

测定原理

铁离子荧光探针—Mito-FerroGreen货号:M489

产品特点

铁离子检测试剂的选择

可以根据自己的实验方法和实验仪器选择检测试剂

 

FerroOrange Mito-FerroGreen
细胞内分布 细胞内 线粒体
荧光特性 λex : 543 nm、λem : 580 nm λex : 505 nm、λem : 535 nm
检测仪器 荧光显微镜 荧光显微镜 (FITC、GFP)
(滤镜)
检测对象 活细胞 活细胞
染色次数 24 μg可染色35 mm dish 17块板 50 μg可染色35 mm dish 5块板
(终浓度 1 μmol/l時) (终浓度 5 μmol/l時)

实验例

1.线粒体定位

为了确认Mito-FerroGreen的是否特异性地在线粒体内定位,与线粒体染色试剂(MitoBright Deep Red※)一同进行染色,实验结果证实了Mito-FerroGreen选择性地染色在线粒体内。

向HeLa细胞中添加5μmol/ l的Mito-FerroGreen和200 nmol/l的线粒体染色探针MitoBright Deep Red,并在CO2培养箱中培养30分钟,然后添加100μmol/ l的硫酸铁铵(II),并将混合后的细胞溶液在CO2培养箱中培养1小时后通过观察荧光。

铁离子荧光探针—Mito-FerroGreen货号:M489

Mito-FerroGreen

激发波长:488 nm

发射波长:500-565 nm

MitoBright Deep Red

激发波长:640 nm

发射波长:656-700 nm

2.线粒体内的铁离子荧光成像

在含有血清的MEM培养基中接种HeLa细胞,并加入Mito-FerroGreen,通过荧光检测HeLa细胞众线粒体内的二价铁(左图)。而在添加了铁离子的HeLa细胞中,观察到了Mito-FerroGreen的荧光明显增强(中间图)。在添加了铁螯合剂的细胞中,几乎未观察到Mito-FerroGreen的荧光(右图)。 以这种方式,证实了线粒体中铁含量的差异和荧光强度的差异是成相关性的。

铁离子荧光探针—Mito-FerroGreen货号:M489

3.对二价铁离子的高度选择性和高信号

向1ml 50mmol/l HEPES Buffer(pH7.4)中加入2μl 1mol/l Mito-FroGreen、2μl 10mmol/l各种金属以及20μl 1mg/ml酯化酶,在室温下反应1小时后测定荧光强度。

激发波长:500 nm

发射波长:535 nm

铁离子荧光探针—Mito-FerroGreen货号:M489

4.适用于通用滤光片

Mito-FerroGreen的激发波长为488nm,最大激发波长可达505nm。

向3ml 50 mmol/l HEPES Buffer (pH7.4) 中加入 6μl 1mol/l Mito-FroGreen、6μl 10mmol/l硫酸铵铁(Ⅱ)以及20μl 1mg/ml酯化酶。在37℃下反应1小时后检测荧光强度。

激发波长:500 nm

发射波长:535 nm

铁离子荧光探针—Mito-FerroGreen货号:M489

参考文献

1) T. Hirayama,  S. Kadota, M. Niwa  and  H. Nagasawa, “A mitochondria-targeted fluorescent probe for selective detection of mitochondrial labile Fe(II)”, Metallomics., 2018, DOI: 10.1039/C8MT00049B

2) T. Issitt, E. Bosseboeuf, N. Winter, N. Dufton, G. Gestri, V. Senatore, A. Chikh, A. Randi, C. Raimondi, “Neuropilin-1 controls endothelial homeostasis by regulating mitochondrial function and iron-dependent oxidative stress via ABCB8”, iScience., 2018,DOI: 10.1016/j.isci.2018.12.005 .

3) E. E. Mon, F. Y. Wei, R. N. R. Ahmad, T. Yamamoto, T. Moroishi and K. Tomizawa, “Regulation of mitochondrial iron homeostasis by siderofexin 2 “, J Physiol Sci., 2018,doi:10.1007/s12576-018-0652-2.

4) M. Fujimaki, N. Furuya, S. Saiki, T. Amo, Y. Imamichi and N. Hattori, “Iron supply via NCOA4-mediated ferritin degradation maintains mitochondrial functions”, Mol. Cell. Biol.., 2019,doi: 10.1128/MCB.00010-19.

5) K. Tomita, M. Fukumoto, K. Itoh, Y. Kuwahara, K. Igarashi, T. Nagasawa, M. Suzuki, A. Kurimasa and T. Sato, “MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells.”, Biochem Biophys Res Commun.., 2019,doi: 10.1016/j.bbrc.2019.08.117.

6) Y. Wang and M. Tang, “PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance”, Environ. Pollut., 2019, 264, doi: 10.1016/j.envpol.2019.07.105.

7) KF. Yambire, C. Rostosky, T. Watanabe, D. Pacheu-Grau, S. Torres-Odio,A. Sanchez-Guerrero,O. Senderovich, EG. Meyron-Holtz,I.Milosevic, J. Frahm, AP. West and N. Raimundo, “Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo.”, Elife, 2019, 3, (8), doi:10.7554/eLife.51031.

8) H. Nishizawa, M. Matsumoto, T. Shindo, D. Saigusa, H. Kato, K. Suzuki, M. Sato, Y. Ishii, H. Shimokawa and K. Igarashi, “Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1″,  J. Biol. Chem.,  2019,doi: 10.1074/jbc.RA119.009548.

9)Y. akashima, A. Hayano and B. Yamanaka, Metabolome analysis reveals excessive glycolysis via PI3K/AKT/mTOR and RAS/MAPK signaling in methotrexate-resistant primary CNS lymphoma-derived cells.”, Clin. Cancer Res., 2020, DOI:10.1158/1078-0432.

常见问题Q&A

Q1:是否可以对酵母进行染色吗?
A1:我们公司有酵母染色的实验例,染色的具体实验步骤请联系我们公司的销售人员。
Q2:推荐使用的滤光片波长是多少?
A2:检测时推荐的滤光片如下:

激发波长:450~500 nm

发射波长:515~550 nm

规格性状

性状:本品溶于乙腈、甲醇、二甲醇。

纯度(HPLC):90.0%以上

荧光光谱:适合测试

关联产品

铁离子荧光探针—Mito-FerroGreen货号:M489
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

铁离子荧光探针—Mito-FerroGreen货号:M489
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

铁离子荧光探针—Mito-FerroGreen货号:M489
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14
线粒体超氧化物检测用荧光染料
mtSOX Deep Red – Mitochondrial Superoxide Detection
商品信息
储存条件:0-5℃,避光
运输条件:室温

特点:

 

● 对超氧化物的选择性高

● 独特的荧光特性(λex: 540 nm; λem: 670 nm)

下载说明书
产品文献
宣传资料下载

选择规格:
100nmol*1
100nmol*3

现货

线粒体检测方案

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

产品概述
与其他试剂的比较
实验例
常见问题Q&A
产品文献

产品概述

        线粒体在生成ATP的同时会生成超氧化物。正常情况下,细胞的抗氧化酶等物质会保护细胞免受活性氧的伤害。但是,当线粒体功能异常时,活性氧过量积累会造成细胞的各种机能紊乱。因此在评价细胞氧化应激水平时,往往需要同时检测线粒体的膜电位和线粒体的活性氧。

与其他试剂的比较

对各种活性氧的反应选择性

 

mtSOXDeep Red相较于T公司的产品Red,在各种活性氧中,对超氧化物的选择性更高。

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

另外,与其他公司产品所不同的是,mtSOX  Deep Red拥有独特的荧光特性(λex: 540 nm; λem: 670 nm),可以同时进行线粒体膜电位检测试剂(JC-1 货号MT09; MT-1 货号MT13)的共染色实验。

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

实验例

线粒体超氧化物和线粒体膜电位的同时检测

用HBSS清洗HeLa细胞后,使用mtSOX和同仁化学研究所的线粒体膜电位检测试剂(JC-1 货号MT09或MT-1 货号MT13)进行共染色实验,同时观察线粒体ROS和线粒体膜电位。

结果显示,伴随着线粒体ROS的产生,线粒体膜电位也逐渐降低。

 

<使用JC-1的实验操作>

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

 

<检测条件>

JC-1:绿Ex=488 nm; Em= 490-520 nm; 红Ex=561 nm; Em= 560-600 nm

mtSOX:Ex=633 nm; Em= 640-700 nm

Scale bar: 10 μm

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

 

<检测条件>

JC-1:绿Ex=485 nm; Em= 535 nm; 红Ex=535 nm; Em= 595 nm

mtSOX:Ex=550 nm; Em= 675 nm

<使用MT-1的实验操作>

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

<检测条件>

MT-1: Ex=561 nm; Em= 560-600 nm

mtSOX:Ex=633 nm; Em= 640-700 nm

Scale bar: 10 μm

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

<检测条件>

MT-1: Ex=545 nm; Em= 600 nm;

mtSOX:Ex=550 nm; Em= 675 nm

细胞内Total ROS和线粒体超氧化物的同时检测

 

用HBSS清洗HeLa细胞后,使用mtSOX和同仁化学研究所的细胞内ROS检测试剂(ROS Assay Kit -Highly Sensitive DCFH-DA- 货号:R252)进行共染色实验,通过线粒体超氧化物诱导剂Antimycin或过氧化氢诱导后进行荧光观察。

结果显示,可以分别观察到细胞内ROS诱导后的荧光增强和线粒体的ROS诱导后的荧光增强。

<实验操作>

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

 

<Antimycin刺激的结果>

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

 

<检测条件>

细胞内ROS:  Ex=488 nm; Em= 490-520 nm

mtSOX:Ex=633 nm; Em= 640-700 nm

Scale bar: 10 μm

 

衰老细胞线粒体超氧化物检测

 

提示:脂褐素内源性荧光最小化

脂褐素对细胞衰老研究的影响

众所周知,衰老细胞会积累被称为脂褐素的氧化损伤蛋白质,这些蛋白质不会被溶酶体降解。线粒体作为溶酶体中的不溶性物质,导致荧光观察过程中背景增加。在细胞衰老研究中,有必要尽量减少脂褐素或其他物质对内源性荧光的影响。

使用升级后的荧光探针

我们分别使用T公司的产品和Dojindo公司的mtSOX Deep Red-线粒体超氧化物检测用荧光染料,检测在增殖期(第2代)和衰老(第14代)TIG-1细胞(人胎肺来源的成纤维细胞)中观察到线粒体超氧化物。

结果显示:在T公司的产品(染色浓度:5 μmol/l)的情况下,除了在增殖细胞和衰老细胞中观察到线粒体荧光外,还观察到很强的荧光背景。从未染色细胞的图像中发现该背景荧光是内源性荧光。另一方面,当使用mtSOX Deep Red(染色浓度:1μmol/l)时,可以观察到线粒体超氧化物产生的荧光,而荧光背景的影响很小。在观察线粒体超氧化物时,重要的是比较灵敏度、波长和通道,然后用合适的荧光探针进行观察,以最大限度地减少内源性荧光的产生。

 

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

※mtSOX的最佳浓度因细胞而异。关于不同染色浓度下内源性荧光的不同影响的讨论,请参阅”常见问题Q&A”:解答当我观察衰老细胞时,发现线粒体外的荧光,应该如何处理?。

<实验数据>

本实验数据,由东京都老年病学研究所Fujita Yasunori教授友情提供。

<参考文献>

Y. Fujita, M. Iketani, M. Ito and I. Ohsawa, “Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts”,  Exp. Gerontol., 2022165, 111866.

 

常见问题Q&A

Q1:mtSOX Deep Red的检测原理是什么?
A1:mtSOX Deep Red被Superoxide特异性氧化后会发出荧光,同时它还可在线粒体处积累,因此可以检测线粒体Superoxide。伴随着Superoxide的增加,线粒体的膜电位消失的话,核小体和细胞质会被染料染色。
Q2:每个试剂盒可以检测多少个样品?
A2:可检测的样品数如下。・ 96-well plate: 1块。

・ ibidi 8-well plate: 6块。

・ 35 mm dish: 5块。

Q3:是否可以用培养基以外的溶液配制Working solution?
A3:可以,可使用HBSS或PBS代替培养基。
Q4:各检测仪器适用的滤光片?
A4:荧光显微镜、流式细胞仪、荧光酶标仪均可检测。

・激光共聚焦显微镜

Ex/Em: 561/640-700 nm (无红色荧光染料共染时)

Ex/Em: 633/640-700 nm (与红色荧光染料共染时)

 

・荧光显微镜

TxRed Filter

 

・荧光酶标仪

Ex/Em: 535–565/660–690 nm

 

 

 

Q5:是否可以刺激后再染色?
A5:在线粒体膜电位正常的前提下是有可能的。本染料依赖线粒体膜电位在线粒体处积累,因此如果药物刺激造成线粒体膜电位降低的话,染料将无法在线粒体处积累,影响检测结果。因此推荐先染色再进行药物刺激。
Q6:当我观察衰老细胞时,发现线粒体外的荧光,应该如何处理?
A6:请检查以下两个实验参数

(1)检测条件

制备染色和未染色的细胞,并在内源性荧光最小化的条件下进行观察。

(2)染料浓度

mtSOX的最佳浓度取决于细胞等多因素;可考虑在1-10μmol/l的浓度范围下摸索。

(参考案例)

TIG-1细胞(人胎肺来源的成纤维细胞,传14代)用1、10μmol/l浓度的mtSOX染色并观察。观察到1μmol/l的细胞具有较少的内源性荧光。

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

<实验数据>

本实验数据,由东京都老年病学研究所Fujita Yasunori教授友情提供。

 

 

产品文献

1、D. Sun, S. Cui, H. Ma, P. Zhu, N. Li, X. Zhang, L. Zhang, L. Xuan, J. Li , “Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury”, 2022, J. Ethnopharmacol., doi:10.1016/j.jep.2022.115331.

2、Y. Fujita, M. Iketani, M. Ito, I. Ohsawa, “Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts”, 2022, Exp. Gerontol.,  doi:10.1016/j.exger.2022.111866.

3、R. Inoe, T. Tsuno, Y. Togashi, T. Okuyama, A. Sato, K. Nishiyama, M. Kyohara, J. Li, S. Fukushima, T. Kin, D. Miyashita, Y. Shiba, Y. Atobe, H. Kiyonari, K. Bando, A. S. Shapiro, K. Funakoshi, R. N. Kulkarni, Y. Terauchi, and J. Shirakawa, “Uncoupling protein 2 and aldolase B impact insulin release by modulating mitochondrial function and Ca2+ release from the ER”, 2022, iScience,  doi:10.1016/j.isci.2022.104603.

4、A. Patel, M. Simkulet, S. Maity, M. Venkatesan, A. Matzavinos, M. Madesh & B. R. Alevriadou, “The mitochondrial Ca2+ uniporter channel synergizes with fluid shear stress to induce mitochondrial Ca2+ oscillations”, 2022, Sci. Rep., doi:10.1038/s41598-022-25583-7.

5、Hao Gu, Yuhui Zhu, Jiawei Yang, Ruixue Jiang, Yuwei Deng, Anshuo Li, Yingjing Fang, Qianju Wu, Honghuan Tu, Haishuang Chang, Jin Wen, Xinquan Jiang,”Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration.Advanced Science”,2023Advanced Science, doi:10.1002/advs.202302136

6、Jiawei Zhou , Lingchao Meng , Ziqi He , Qianlin Song , Junwei Liu , Xiaozhe Su , Chuan Wang , Hu Ke , Caitao Dong , Wenbiao Liao , Sixing Yang ,”Melatonin exerts a protective effect in ameliorating nephrolithiasis via targeting AMPK/PINK1-Parkin mediated mitophagy and inhibiting ferroptosis in vivo and in vitro”,2023, International Immunopharmacology,doi: 10.1016/j.intimp.2023.110801

关联产品

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

MitoBright LT Red试剂
线粒体长效荧光探针-红色

日本同仁化学线粒体自噬—Mitophagy Detection Kit货号:MD01- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载

选择规格:
1set

现货

 
线粒体自噬检测

线粒体自噬—Mitophagy Detection Kit货号:MD01

线粒体自噬—Mitophagy Detection Kit货号:MD01

活动进行中
试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

活动进行中

订购满5000元,200元礼品等你拿

线粒体自噬大揭秘丨从实验思路到检测指标  PDF下

 

关联指标干货参考(点击查看) 检测指标(点击查看)
线粒体自噬详述 Mitophagy Detection Kit(本产品)
多细胞器共染&线粒体动力学 MitoBright IM Red for Immunostaining
MitoBright LT Green/Red/Deep Red
线粒体功能 JC-1 、MT-1
CCK-L、ADP/ATP比率检测
Oxygen Consumption Rate(OCR)
mtSOX
ROS Assay Kit -Highly Sensitive DCFH-DA-
ROS Assay Kit -Photo-oxidation Resistant DCFH-DA-
Ca2+从内质网到线粒体 Fura 2-AM
Fluo 4-AM
Rhod 2-AM
线粒体自噬-溶酶体功能 Lysosomal Acidic pH Detection Kit
Lysosomal Acidic pH Detection Kit-Green/Deep Red
线粒体自噬-脂质定位&定量 Lipi-Blue/Green/Red/Deep Red
Lipid Droplet Assay Kit-Blue/Deep Red
细胞死亡 Cell Counting Kit-8
Cytotoxicity LDH Assay Kit-WST
Annexin V, FITC Apoptosis Detection Kit

*点击即可跳转至详情页 

试剂盒内含

线粒体自噬—Mitophagy Detection Kit货号:MD01

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

线粒体自噬—Mitophagy Detection Kit货号:MD01

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

线粒体自噬—Mitophagy Detection Kit货号:MD01

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

线粒体自噬—Mitophagy Detection Kit货号:MD01

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

线粒体自噬—Mitophagy Detection Kit货号:MD01

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

线粒体自噬—Mitophagy Detection Kit货号:MD01

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

MitoBright LT Green试剂
线粒体长效荧光探针-绿色

MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学Mtphagy Dye试剂货号:MT02- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Mtphagy Dye试剂货号:MT02
Mtphagy Dye
Mtphagy Dye
商品信息
储存条件:0-5度保存,避光防潮,充氮气
运输条件:室温

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

选择规格:
5μg*3

期货

 

关联产品

Mtphagy Dye试剂货号:MT02
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

Mtphagy Dye试剂货号:MT02
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

Mtphagy Dye试剂货号:MT02
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

Mtphagy Dye试剂货号:MT02
MitoBright LT Green试剂
线粒体长效荧光探针-绿色

Mtphagy Dye试剂货号:MT02
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学Cellstain- MitoRed试剂货号:R237- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

Cellstain- MitoRed试剂货号:R237
9-[2-(4′-MethylcoumariN-7′-oxycarbonyl)phenyl]-3,6-bis(diethylamino)xanthylium chloride
Cellstain- MitoRed
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温
分子式:

C38H37ClN2O5

分子量:

637.17

特点:

 

● 基于膜电位对线粒体染色

● 红色荧光

● 激发和发射波长分别为560 nm和580 nm

SDS下载

选择规格:
50μg*8

期货

 
线粒体检测方案

Cellstain- MitoRed试剂货号:R237

Cellstain- MitoRed试剂货号:R237

规格性状
产品概述
荧光特性
操作说明
文献
常见问题Q&A

规格性状

规格

特性:该产物为品红色至紫棕色固体,可溶于二甲基亚砜和甲醇。

可溶于二甲基亚砜:试验成功

NMR光谱:试验适合

产品概述

MitoRed为基于罗丹明的可透过细胞膜的染料。它集中于线粒体内并发出红色荧光。MitoRed与线粒体的相互作用取决于线粒体的膜电位。

可用20-200 nM MitoRed对线粒体染色。MitoRed的激发和发射波长分别为560 nm和580 nm。

Cellstain- MitoRed试剂货号:R237

荧光特性

λex=560 nm, λem=580 nm

操作说明

染色步骤

1. 将50 µg MitoRed溶解到78 µl DMSO中制备成1 mM MitoRed-DMSO溶液。

2. 用载玻片准备细胞。细胞数目应为5×104-5×105个/ml。

3. 孵育该载玻片,用PBS或Hank’s液洗涤细胞。

4. 用培养基稀释1 mM MitoRed溶液以制备20-200 nM MitoRed缓冲液。

5. 将MitoRed缓冲液a) 加入载玻片并在37℃下孵育30分钟至1小时。

6. 去除MitoRed缓冲液并用培养基洗涤细胞。b)

7. 用带有罗丹明滤光片的荧光显微镜观察细胞。

a) 加入细胞前将MitoRed缓冲液放在37℃下孵育。

b) 洗涤细胞后为了固定,加入10%福尔马林缓冲液并孵育15-20分钟,接着用PBS洗涤。

Cellstain- MitoRed试剂货号:R237

文献

1) R. Ikeda, T. Sugita, E. S.  Jacobson and T. Shinoda, “Effects of Melanin upon Susceptibility of  Cryptococcus to Antifungals”, Microbiol.  Immunol., 2003, 47(4),  271.

常见问题Q&A

Q1:如何使用Mito Red。

 

 

 

 

 

 

A1:

下面显示了一个使用HeLa细胞的示例。

*根据细胞类型和观察条件,有必要检查试剂浓度和染色条件。

<试剂>

-Cellstain®-MitoRed

二甲基亚砜

用DMSO 78μL→1 mmol / L溶液溶解MitoRed 50μg(1瓶)

<操作方法>

1.培养小室玻片上的细胞,以使细胞密度合适。

(1×105至1×106细胞/ mL)

2.除去培养基,并轻轻洗涤(培养基,PBS,Hank溶液等)。

用中等浓度将3.1 mmol / L的MitoRed溶液稀释至最终浓度为20-200 nmol / L。

(最好先将其在37°C的温度下保温,然后再添加到细胞中)

将稀释的MitoRed溶液加入孔中,并在培养条件下孵育大约30分钟至1小时。

4.除去MitoRed溶液,并用中性溶液洗涤。

5.在荧光显微镜G激发下观察。

(Λex= 560 nm,λem= 580 nm)

固定电池时,请执行以下(3)之后的操作。

4.除去MitoRed溶液并洗涤。

(无血清培养基,PBS,Hank溶液等)

5.用5.10%中性福尔马林缓冲液固定15至20分钟。

6.用PBS清洁。

7.在荧光显微镜下观察。

 

 

Q2:细胞染料的激发波长和发射波长是多少。

A2:

Cellstain- MitoRed试剂货号:R237

 

Q3:不管是活细胞还是死细胞,它都会染色细胞内线粒体吗?

 

 

 

 

 

 

 

A3:仅活细胞。它不能用于死细胞,因为线粒体的膜电位会丢失。

 

关联产品

Cellstain- MitoRed试剂货号:R237
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

Cellstain- MitoRed试剂货号:R237
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒

Cellstain- MitoRed试剂货号:R237
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

Cellstain- MitoRed试剂货号:R237
MitoBright LT Green试剂
线粒体长效荧光探针-绿色

Cellstain- MitoRed试剂货号:R237
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

日本同仁化学线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09- DOJINDO

上海金畔生物科技有限公司代理日本同仁化学 DOJINDO代理商全线产品,欢迎访问官网了解更多信息

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
线粒体膜电位检测试剂盒
JC-1 MitoMP Detection Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 灵敏度高

● 易上手

● 多种仪器均可检测

 

下载说明书
产品文献
SDS下载
JC-1宣传资料
常见问答
线粒体宣传资料
通路图下载
线粒体讲座

选择规格:
1set

现货

易溶解

可使用于各种仪器

专用成像缓冲液

更多线粒体检测方案(点击查看)

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

产品解说
活动进行中
试剂盒内含
产品概述
产品特点
操作步骤
实验例
参考文献
常见问题Q&A

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8     细胞增殖毒性检测   

NO.2.    ROS Assay Kit    活性氧检测

NO.3.    FerroOrange    细胞亚铁离子检测

NO.4.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽

NO.5.    Mitophagy Detection Kit    线粒体自噬检测

 

试剂盒内含

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

产品概述

细胞中的线粒体作为有氧呼吸产生ATP的主要场所,是体内重要的细胞器之一,常被用于早期细胞毒性、氧化应激、细胞凋亡等研究中1)。线粒体活性的降低与机能失调,已被证实与癌症、衰老、神经退行性疾病 (如阿尔兹海默症、帕金森病等) 等密切相关2)3)

JC-1是一种被广泛使用的小分子线粒体膜电位探针,依赖于线粒体膜电位在线粒体中聚集,染料伴随聚集过程,荧光从绿色 (530 nm) 变为红色 (590 nm)。当线粒体发生去极化,红/绿荧光强度比值降低。以往的研究者反映,JC-1不易溶于水并有大量沉淀产生。但与其他公司的产品不同,同仁化学研究所研制的JC-1试剂解决了这一问题,避免了沉淀的产生。同时使用试剂盒中配制的成像缓冲液 (Imaging Buffer),可大幅降低荧光背景并在检测过程中保护细胞不受损伤。

当JC-1工作液的浓度为2 μmol/l, 每次用量为100 μl时,可以检测500次。

产品特点

1.为什么要检测线粒体膜电位

线粒体不仅是细胞内产生能量的场所,它还与癌症、衰老、阿尔兹海默症、帕金森等神经变异性疾病密切相关。因此,针对线粒体状态的研究非常重要,其中线粒体膜电位的变化经常被作为重要的指标之一检测。

当线粒体正常、膜电位差保持不变时,JC-1会聚集并发出红色荧光,而当膜电位降低时,JC-1会作为单体存在并发出绿色荧光。红色和绿色荧光强度的变化可以作为检测线粒体状态的指标。

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

2.初次使用也很容易上手

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

3.去极化的检测实例

使用去极化剂carbonylcyanide-p-trifluoromethoxyphenylhydrazone(FCCP)对HeLa细胞进行处理,用本试

剂盒进行检测。可以发现与未加药物的细胞相比,加药组细胞的红色荧光明显减少。

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

实验条件

JC-1浓度: 2 μmol/l in MEM, 染色时间30 min

FCCP浓度:100 μmol/l, FCCP处理时间1 h

检测条件

Green : Ex 488 nm/ Em 500-550 nm;

Red : Ex 561 nm/ Em 560-610 nm;

标尺: 20 μm

操作步骤

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

实验例

1.诱导凋亡的实验例

1.1 荧光显微镜

通过荧光颜色的改变判断由凋亡导致的线粒体膜电位的变化。

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

检测条件

Green: Ex 488 nm / Em 500-550 nm

Red : Ex 561 nm / Em 560-610 nm

标尺: 80 μm

1.2 流式细胞仪

定量分析单个细胞的膜电位变化

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

检测条件

Green: Ex 488 nm / Em 515-545 nm

Red : Ex 488 nm / Em 564-604 nm

1.3 酶标仪

确认孔板中吸光度来判断线粒体膜电位的变化

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

检测条件

Green: Ex 485 nm / Em 525-545 nm

Red : Ex 535 nm / Em 585-605 nm

2.诱导自噬的实验例

使用表达Parkin的HeLa细胞,分别使用线粒体自噬试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit: MT09)来观察添加和不添加CCCP(羰基氰化物间氯苯)的线粒体状态的变化。

结果证明在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 而在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光的降低)和线粒体的自噬(Mtphagy染料的荧光的增强)。

<检测条件>

线粒体自噬检测

Ex:561 nm,Em:570-700 nm

线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

实验条件

1.将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

然后过夜培养,收集细胞进行以下检测。

2.自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。荧光显微镜下观察处理后的细胞。

3.线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作溶液使终浓度至2 μmol/l,并将细胞溶液在37℃下孵育30分钟。孵育后将细胞用HBSS洗涤,加入成像缓冲液,在荧光显微镜下观察细胞。

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

3.线粒体膜电位与细胞周期关联性

将已知能在细胞周期的G2/M期起作用以终止细胞增殖并诱导细胞衰老的阿霉素(DOX)加入A549细胞后,

使用细胞周期检测试剂盒蓝色(产品代码:C549)/深红色(产品代码:C548)后检测。

结果证实了A549细胞的细胞周期确实发生了变化,同时用细胞衰老检测试剂盒–SPiDER-βGal(产品代码:SG03)证实了细胞产生衰老,实验证实了线粒体膜电位会发生变化。

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

参考文献

No. Sample Type Instrument Reference
1 Cell:A549 Microscope K. Li, S. Sun, L. Xiao and Z. Zhang, “Bioactivity-guided fractionation of Helicteres   angustifolia L. extract and its molecular evidence for tumor   suppression”, Front Cell Dev Biol.,2023, doi:   10.3389/fcell.2023.1157172.
2 Cell:A549 Flow Cytometer C. N. D’Alessandro-Gabazza, T. Yasuma, T.   Kobayashi, M. Toda1, A. M. Abdel-Hamid, H. Fujimoto, O. Hataji, H. Nakahara,   A. Takeshita, K. Nishihama, T. Okano, H. Saiki, Y. Okano, A. Tomaru, V. F.   D’Alessandro, M. Shiraishi, A. Mizoguchi, R. Ono, J. Ohtsuka, M. Fukumura, T.   Nosaka, X. Mi, D. Shukla, K. Kataoka, Y. Kondoh, M. Hirose, T. Arai, Y.   Inoue, Y. Yano, R. I. Mackie, I. Cann and E. C.   Gabazza, “Inhibition of lung microbiota-derived proapoptotic   peptides ameliorates acute exacerbation of pulmonary   fibrosis”, Nat. Comm., 2022, doi:10.1038/s41467-022-29064-3.
3 Cell:A549, HeLa Plate reader J. Yang, L. Liu, Y. Oda, K. Wada, M. Ago, S.   Matsuda, M. Hattori, T. Goto, Y. Kawashima, Y. Matsuzaki and T.   Taketani,”Highly-purified rapidly expanding clones, RECs, are superior   for functional-mitochondrial transfer”, Stem Cell Res Ther., 2023,   doi: 10.1186/s13287-023-03274-y.
4 Cell:ALM Plate reader T. Nechiporuk, S.E. Kurtz, O. Nikolova, T.   Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K. Joshi, M.   Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang, S. K   McWeeney and J. W. Tyner , “The TP53 Apoptotic Network Is a   Primary Mediator of Resistance to BCL2 Inhibition in AML   Cells.”, Cancer Discov, 2019, 9,
5 Cell:ARPE-19 Flow Cytometer/ J. Hamuro, T. Yamashita, Y. Otsuki, N.   Hiramoto, M. Adachi, T. Miyatani, H. Tanaka, M. Ueno, S. Kinoshita and C.   Sotozono,”Spatiotemporal Coordination of RPE Cell Quality by   Extracellular Vesicle miR-494-3p Via Competitive Interplays With SIRT3 or PTEN”, Invest   Ophthalmol Vis Sci., 2023, doi: 10.1167/iovs.64.5.9.
6 Cell:ARPE-19 Microscope J. H. Quan, F. F. Gao, H. A. Ismail, J. M.    Yuk, G. H. Cha, J. Q. Chu and Y. H. Lee,  “Silver   Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma   gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation”, Int   J Nanomedicine., 2020, 15, 3695–3716.
7 Cell:C2C12, myocytes Z. Jing, T. Iba, H. Naito, P. Xu, J.I.   Morishige, N. Nagata, H. Okubo and H.Ando ,”L-carnitine   prevents lenvatinib-induced muscle toxicity without impairment of the   anti-angiogenic efficacy”, Front Pharmacol., 2023, doi:   10.3389/fphar.2023.1182788.
8 Cell:C2C12, 3T3L1 Plate reader M. Kurano, K. Tsukamoto, T. Shimizu, H.   Kassai, K. Nakao, A. Aiba, M. Hara and Yatomi , “Protection   Against Insulin Resistance by Apolipoprotein M/Sphingosine   1-Phosphate “, Diabetes, 2020, DOI:   10.2337/db19-0811.
9 Cell:Colon 26 Microscope B. Uranbileg, M. Kurano, K. Kano, E. Sakai, J.   Arita, K. Hasegawa, T. Nishikawa, S. Ishihara, H. Yamashita, Y. Seto, H.   Ikeda, J. Aoki and Y. Yatomi,”Sphingosine 1‐phosphate lyase facilitates   cancer progression through converting sphingolipids to glycerophospholipids”, Clin   Transl Med., 2022, doi: 10.1002/ctm2.1056.
10 Tissue:
Frozen heart slides
Microscope W. Yu, Y. Hu, Z. Liu, K. Guo, D. Ma, M. Peng,   Y. Wang, J. Zhang, X. Zhang, P. Wang, J. Zhang, P. Liu and J.   Lu,”Sorting nexin 3 exacerbates doxorubicin-induced cardiomyopathy via   regulation of TFRC-dependent ferroptosis”, Acta Pharmaceutica   Sinica B., 2023, doi: https://doi.org/10.1016/j.apsb.2023.08.016.
11 Cell:HCE Microscope T. Yamashita, K. Asada, M. Ueno, N. Hiramoto,   T. Fujita, M. Toda, C. Sotozono, S. Kinoshita and J. Hamuro,”Cellular   interplay through extracellular vesicle miR-184 alleviates corneal   endothelium degeneration”, Ophthalmol Sci., 2022, doi:   10.1016/j.xops.2022.100212.
12 Cell:HCE Microscope M. Ueno, K Yoshii, T. Yamashita, K. Sonomura,   K. Asada, E. Ito, T. Fujita, C. Sotozono, S. Kinoshita and J.   Hamuro,”The Interplay Between Metabolites and MicroRNAs in Aqueous Humor   to Coordinate Corneal Endothelium Integrity”, Ophthalmol Sci., 2023,   doi: 10.1016/j.xops.2023.100299.
13 Cell:HCE-T W. Otsu, T. Yako, E. Sugisawa, S. Nakamura, H.   Tsusaki, N. Umigai, M. Shimazawa and H. Hara,”Crocetin protects against   mitochondrial damage induced by UV-A irradiation in corneal epithelial cell   line HCE-T cells”, J Pharmacol Sci., 2022, doi:   10.1016/j.jphs.2022.10.005.
14 Cell:HCE-T Microscope K. Ishida, T. Yako, M. Tanaka, W. Otsu, S.   Nakamura, M. Shimazawa, H. Tsusaki and H. Hara,”Free-radical   scavenger NSP-116 protects the corneal epithelium against UV-A and blue led   light exposure”, Biol Pharm Bull., 2021, doi:   10.1248/bpb.b21-00017.
15 Cell:HepG Microscope/Spectrophotometer M. Ikura, K. Furuya, T. Matsuda and T. Ikura,”Impact of Nuclear De Novo NAD+ Synthesis via Histone   Dynamics on DNA Repair during Cellular Senescence To Prevent   Tumorigenesis”, Mol Cell Biol., 2022, doi:   10.1128/mcb.00379-22.
16 Cell:hiPSCs, Neurons Microscope T. Hara, M. Toyoshima, Y. Hisano, S. Balan, Y.   Iwayama, H. Aono,Y. Futamura, H. Osada, Y. Owada and T.   Yoshikawa,”Glyoxalase I disruption and external carbonyl stress impair   mitochondrial function in human induced pluripotent stem cells and derived neurons”, Translational   Psychiatry., 2021, doi: 10.1038/s41398-021-01392-w.
17 Cell:HSCs Microscope Y. Su, S. Lu, C. Hou, K. Ren, M. Wang, X. Liu,   S. Zhao and X. Liu ,”Mitigation of liver fibrosis   via hepatic stellate cells mitochondrial apoptosis induced by   metformin”, International Immunopharmacology., 2022, doi:   10.1016/j.intimp.2022.108683.
18 Cell:HUVECs Microscope D. Ueno, K. Ikeda, E. Yamazaki, A. Katayama,   R. Urata and S. Matoba ,”Spermidine improves   angiogenic capacity of senescent endothelial cells, and enhances   ischemia-induced neovascularization in aged mice”, Sci   Rep., 2023, doi: 10.1038/s41598-023-35447-3.
19 Cell:KYSE30 Microscope Q. Luo, X. Wu, P. Zhao, Y. Nan, W. Chang, X.   Zhu, D. Su and Z. Liu,”OTUD1 activates   caspase‐independent and caspase‐dependent apoptosis by promoting AIF nuclear   translocation and MCL1 degradation”, Adv Sci (Weinh)., 2021,   doi: 10.1002/advs.202002874.
20 Cell: Macrophage Microscope G. Yang, M. Fan, J. Zhu, C. Ling, L. Wu, X.   Zhang, M. Zhang, J. Li, Q. Yao, Z. Gu and X. Cai, “A   multifunctional anti-inflammatory drug that can specifically target activated   macrophages  massively deplete intracellular H2O2 and produce   large amounts CO for a highly efficient treatment of   osreoarthritis”  , Biomaterials, 2020,  doi:10.1016/j.biomaterials.2020.120155.
21 Cell:MDA-MB-415, MCF-7 Microscope S.Y. Park, K.J. Jeong, A. Poire, D. Zhang,   Y.H. Tsang, A.S. Blucher and G.B. Mills ,”Irreversible HER2 inhibitors   overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified   luminal breast cancer”, Cell Death & Disease., 2023, doi:   10.1038/s41419-023-06042-1.
22 Cell:MIN6 Plate reader/Microscope N. Mizusawa, N. Harada, T. Iwata, I. Ohigashi,   M. Itakura and K. Yoshimoto,”Identification of   protease serine S1 family member 53 as a mitochondrial protein in murine   islet beta cells”, Islets., 2022, doi:   10.1080/19382014.2021.1982325.
23 Cell:MSCs Flow Cytometer S.Y. Jo, H.J. Cho and T.M. Kim,”Fenoldopam mesylate enhances the survival of mesenchymal   stem cells under oxidative stress and increases the therapeutic function in   acute kidney injury”, Cell Transplant., 2023, doi:   10.1177/09636897221147920.
24 Cell:Neuro-2A Microscope、Plate reader Y. Wang, Y. Shinoda, A. Cheng, I. Kawahata and   K. Fukunaga,”Epidermal fatty acid-binding protein 5   (FABP5) Involvement in alpha-synuclein-induced mitochondrial injury under   oxidative stress”, Biomedicines., 2021, doi:   10.3390/biomedicines9020110.
25 Cell:Neuron Microscope I. Kawahata, L. Luc Bousset, R.   Melki and K. Fukunaga , “Fatty   Acid-Binding Protein 3 is Critical for α-Synuclein Uptake and MPP+-Induced   Mitochondrial Dysfunction in Cultured Dopaminergic Neurons “, Int J   Mol Sci., 2019, 20, 5358.
26 Cell:Neuron Microscope A. Fukuda, S. Nakashima,Y. Oda, K. Nishimura,   H. Kawashima, H. Kimura, T. Ohgita, E. Kawashita, K. Ishihara, A. Hanaki, M.   Okazaki, E. Matsuda, Y. Tanaka, S. Nakamura, T. Matsumoto, S. Akiba, H.   Saito, H. Matsuda and K. Takata,”Plantainoside B in Bacopa monniera   Binds to Aβ Aggregates Attenuating Neuronal Damage and Memory Deficits   Induced by Aβ”, Biol Pharm Bull., 2023, doi:   10.1248/bpb.b22-00797.
27 Cell:PAECs Plate reader T. Sakai, H. Takagaki, N. Yamagiwa, M. Ui, S.   Hatta and J. Imai,”Effects of the cytoplasm and mitochondrial specific   hydroxyl radical scavengers TA293 and mitoTA293 in bleomycin-induced   pulmonary fibrosis model mice”, Antioxidants (Basel)., 2021,   doi: 10.3390/antiox10091398.
28 Cell:PANC-1 Plate reader W.A. Naime, A. Kimishima, A. Setiawan, J.R.   Fahim, M.A. Fouad, M.S. Kamel and M. Arai,”Mitochondrial Targeting in an   Anti-Austerity Approach Involving Bioactive Metabolites Isolated from the   Marine-Derived Fungus Aspergillus sp.”, Marine drugs., 2020,   doi: 10.3390/md18110555.
29 Cell:PANC-1, MIAPaca-2 Microscope T. Taniai, Y. Shirai,Y. Shimada, R. Hamura, M.   Yanagaki, N. Takada, T. Horiuchi, K. Haruki, K. Furukawa, T. Uwagawa, K.   Tsuboi, Y. Okamoto, S. Shimada, S. Tanaka, T. Ohashi and T.   Ikegami,”Inhibition of acid ceramidase elicits mitochondrial dysfunction   and oxidative stress in pancreatic cancer cells”, Cancer   Sci., 2021, doi: 10.1111/cas.15123.
30 Cell:PC Flow Cytometer R. Hamura, Y. Shirai,Y. Shimada, N. Saito, T.   Taniai, T. Horiuchi, N. Takada, Y. Kanegae, T. Ikegami, T. Ohashi and K.   Yanaga ,”Suppression of lysosomal acid alpha‐glucosidase impacts the   modulation of transcription factor EB translocation in pancreatic   cancer”, Cancer Sci., 2021, doi: 10.1111/cas.14921.
31 Cell:Porcine oocytes Microscope W. Hu, Y. Zhang, D. Wang, T. Yang, J. Qi, Y.   Zhang, H. Jiang, J Zhang, B. Sun and S. Liang,”Iron Overload-Induced   Ferroptosis Impairs Porcine Oocyte Maturation and Subsequent Embryonic   Developmental Competence in vitro”, Front Cell Dev Biol., 2021,   doi: 10.3389/fcell.2021.673291.
32 Cell:Porcine oocytes Microscope Y. Xiao, B. Yuan, W. Hu, J. Qi, H. Jiang, B.   Sun, J. Zhang and S. Liang,”Tributyltin Oxide Exposure During in vitro   Maturation Disrupts Oocyte Maturation and Subsequent Embryonic Developmental   Competence in Pigs”, Front Cell Dev Biol., 2021, doi:   10.3389/fcell.2021.683448.
33 Cell:RGC-5 Plate reader Y. Aoyama, S. Inagaki, K. Aoshima, Y. Iwata,   S. Nakamura, H. Hara and M. Shimazawa,”Involvement of endoplasmic   reticulum stress in rotenone-induced leber hereditary optic neuropathy model   and the discovery of new therapeutic agents”, J Pharmacol Sci   . .,2021, doi: 10.1016/j.jphs.2021.07.003.
34 Cell:SAS,HSC-2 Plate reader K. Yamana, J. Inoue, R. Yoshida, J. Sakata, H.   Nakashima, H. Arita, S. Kawaguchi, S. Gohara, Y. Nagao, H. Takeshita, M.   Maeshiro, R. Liu, Y. Matsuoka, M. Hirayama, K. Kawahara, M. Nagata, A.   Hirosue, R. Toya, R. Murakami, Y. Kuwahara, M. Fukumoto and H. Nakayama,”Extracellular   vesicles derived from radioresistant oral squamous cell carcinoma cells   contribute to the acquisition of radioresistance via the miR‐503‐3p‐BAK   axis”, J Extracell Vesicles., 2021, doi: 10.1002/jev2.12169.
35 Cell:SBC-3 Flow Cytometer N. Takahashi, T. Iguchi, M. Kuroda, M. Mishima   and Y. Mimaki,”Novel Oleanane-Type Triterpene   Glycosides from the Saponaria officinalis L. Seeds and Apoptosis-Inducing   Activity via Mitochondria”, Int J Mol Sci., 2022, doi:   10.3390/ijms23042047.
36 Cell:SH-SY5Y Microscope Q. Guo, I. Kawahata, A. Cheng, H. Wang, W.   Jia, H. Yoshino and K. Fukunaga,”Fatty acid-binding   proteins 3 and 5 are involved in the initiation of mitochondrial damage in   ischemic neurons”, Redox Biology., 2023, doi:   10.1016/j.redox.2022.102547.
37 Cell:SiHa Microscope F.F. Gao, J.H. Quan, M.A. Lee, W. Ye, J.M.   Yuk, G.H. Cha, I.W. Choi and Y.H. Lee,”Trichomonas vaginalis induces   apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in   SiHa cells”, Parasites &vectors., 2021, doi:   10.1186/s13071-021-05098-2.
38 Cell:SU-DHL-2 Flow Cytometer Q. Zhao, D. Jiang, X. Sun, Q. Mo, S. Chen, W.   Chen, R. Gui and X. Ma,”Biomimetic nanotherapy: core–shell structured   nanocomplexes based on the neutrophil membrane for targeted therapy of   lymphoma”, J Nanobiotechnology., 2021, doi: 10.1186/s12951-021-00922-4.
39 Cell:THP-1 Microscope W. Zheng, Z. Zhou, Y. Rui, R. Ye, F. Xia, F.   Guo, X. Liu, J. Su, M. Lou, and X.F. Yu,”TRAF3   activates STING-mediated suppression of EV-A71 and target of viral   evasion”, Signal Transduct Target Ther., 2023, doi:   10.1038/s41392-022-01287-2.
40 Cell:TSM15 In Cell Analyzer M. Honda, F. Shimizu, R. Sato, Y. Mizukami, K.   Watanabe, Y. Takeshita, T. Maeda, M. Koga and T. Kanda,”Jo-1 Antibodies   From Myositis Induce Complement-Dependent Cytotoxicity and TREM-1   Upregulation in Muscle Endothelial Cells”, Neurol Neuroimmunol   Neuroinflamm., 2023, doi: 10.1212/NXI.0000000000200116.
41 Cell:tumor Flow Cytometer H. Wang, X. Rong, G. Zhao, Y. Zhou, Y. Xiao,   D. Ma, X. Jin, Y. Wu, Y. Yan, H. Yang, Y. Zhou, M. Qian, C. Niu, X. Hu, D.Q.   Li, Q. Liu, Y. Wen, Y.Z. Jiang, C. Zhao and Z.M. Shao ,”The microbial   metabolite trimethylamine N-oxide promotes antitumor immunity in   triple-negative breast cancer”, Cell Metab., 2022, doi:   10.1016/j.cmet.2022.02.010.
42 Cell:TY10 In Cell Analyzer F. Shimizu, R. Ogawa, Y. Mizukami, K.   Watanabe, K. Hara, C. Kadono, T. Takahashi, T. Misu, Y. Takeshita, Y. Sano,   M. Fujisawa, T. Maeda, I. Nakashima, K. Fujihara and T. Kanda,”GRP78   antibodies are associated with blood-brain barrier breakdown in anti–myelin   oligodendrocyte glycoprotein antibody–associated disorder”, Neurol   Neuroimmunol Neuroinflamm., 2022, doi: 10.1212/NXI.0000000000001038.
43 Cell:U2OS, HeLa Microscope T. Namba, “BAP31   regulates mitochondrial function via interaction with Tom40 within   ER-mitochondria contact sites “, Sci Adv., 2019, 5, (6),   1386.

常见问题Q&A

Q1: 本试剂盒可以检测多少次?
A1:大概的使用次数请参考下表:
检测装置 容器 使用次数 液量
流式细胞仪 100次 0.5 ml/次
荧光显微镜
荧光酶标仪
35 mm dish 25块板 2 ml/孔
8孔Chamber Slide 30块板 200 μl/孔
96孔板 5块板 100 μl/孔
Q2:在JC-1染色后,可以使用PBS代替HBSS洗涤吗?
A2:我们建议使用HBSS来减少对细胞的损伤。如果您手边没有HBSS的话,建议使用培养基洗净。
Q3:可以使用含血清的培养基吗?
A3:在清洗细胞和Working Solution中可以使用含血清的培养基。在观察荧光时建议使用Imaging Buffer。如果一定要使用含血清的培养基的话,建议不要加酚红。
Q4:染色后细胞固定或者固定后进行染色可以实现吗?
A4:细胞固定操作会使得线粒体去极化,所以染色前后均不能进行细胞固定。
 

Q5:处理后的样品与对照组相比较,红和绿两种荧光值都增加(或减少)了,结果该如何解释?

A5:请先比较实验组和对照组的荧光比值,两者相比,荧光比越低,线粒体膜电位越低。

用荧光之比进行结果分析的理由。

JC-1由于膜电位依存性地在细胞中积蓄,根据细胞的状态,每个细胞的JC-1的浓度有可能不同。

由于对照组和实验组处理样品的细胞状态不同,JC-1的累积浓度不同。)

另外,在线粒体膜电位较高的状态下,JC-1会聚集在一起,使荧光从绿色转移到红色。

该聚集体的量取决于膜电位的程度,因此可以用红/绿之比来比较样品之间的线粒体膜电位。

<参考文献>

1)    Cossarizza, A. et al., Biochem Biophys Res Commun., 1993, 197(1), 40.

2)    Perelman, A. et al., Cell Death and Disease, 2012, 3, e430

3)    Smiley, S. T. et al., Proc. Nail. Acad. Sci., 1991, 88, 3671.

关联产品

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
MitoBright LT Green试剂
线粒体长效荧光探针-绿色

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
MitoBright LT Red试剂
线粒体长效荧光探针-红色