日度归档:2023年12月26日
Whatman09-801-D滤纸、滤器、微孔板系列P5 12.5CM 100/PK
【简单介绍】
【简单介绍】
【详细说明】
上海金畔生物科技有限公司
文章号19548646-19548646
解毒药成分
解毒药成分
- 产品特性
- 相关资料
- Q&A
- 参考文献
解毒药成分
◆谷胱甘肽(还原型)(Glutathione(Reduced Form))
CAS No. 70-18-8 C10H17N3O6S=307.33 纯度:97.0+%(Titration)(干燥后) 可溶性溶剂:水 用途(作用):促进各种化学解毒反应,有解毒作用。 |
◆谷胱甘肽(酸化型)(Glutathione, Oxidized Form)
CAS No. 27025-41-8 C20H32N6O12S2=612.63 纯度:95.0+%(HPLC) 可溶性溶媒:水 用途(作用):促进各种化学解毒反应,有解毒作用。 |
相关资料详情请查看:http://www.boppard.cn/pdf/show/80.html
产品编号 | 产品名称 | 产品规格 | 产品等级 | 产品价格 |
077-02011 | Glutathione(Reduced Form) 谷胱甘肽(还原型) | 1g | - | - |
073-02013 | Glutathione(Reduced Form) 谷胱甘肽(还原型) | 5g | - | - |
071-02014 | Glutathione(Reduced Form) 谷胱甘肽(还原型) | 50g | - | - |
077-02016 | Glutathione(Reduced Form) 谷胱甘肽(还原型) | 100g | - | - |
073-03331 | Glutathione, Oxidized Form 谷胱甘肽(酸化型) | 250g | - | - |
079-03333 | Glutathione, Oxidized Form 谷胱甘肽(酸化型) | 1g | - | - |
077-03334 | Glutathione, Oxidized Form 谷胱甘肽(酸化型) | 5g | - | - |
Millipore 47mm不锈钢换膜过滤器xx4404700
Millipore 47mm不锈钢换膜过滤器xx4404700
说明: 不锈钢换膜过滤器,47 mm
数量/包装: 1
进口接头: 1/4″ NPTF
zui大进口压力,bar (psi): 20 (300)
直径,cm (in): 7.6
高度,cm (in): 2.7
出口接头: 1/4″ NPTF
结构材质: 不锈钢
滤膜直径,mm: 47
密封材质: Silicone
产品名称: 换膜过滤器
过滤面积,cm2: 13.8
47mm 标准换膜过滤器,XX44 047 00.
Millipore 47mm不锈钢换膜过滤器xx4404700技术指标:
XX45 025 00 | XX44 047 00 | XX45 047 00 | |
材料 | |||
外壳 | 不锈钢 | 不锈钢 | 不锈钢 |
垫圈 | Buna-N | Silicone | 氟 |
滤膜直径,mm | 25 | 47 | 47 |
过滤面积,cm2 | 2.2 | 13.8 | 9.6 |
预过滤膜直径,mm | 10(厚型深预过滤膜 ) | 22(厚型深预过滤膜 ) | 42(厚型深预过滤膜 )或 47(预过滤膜) |
Maximum Pressure Differential, bar gauge (psig) | |||
With 3.0, 5.0 and 8.0 µm MCE Millipore filters | 10.3 (150) | – | 10.3 (150) |
With all Millipore membrane filters except 3.0, 5.0 and 8.0 µm MCE filters | 69 (1000) | – | 103 (1500) |
zui大进口压力,bar (psi) | 350 (5000) | 20 (300) | 700 (10,000) |
尺寸 | |||
高,cm | 3.2 | 2.7 | 4.4 |
直径,cm | 5.1 | 7.6 | 8.6 |
接头 | |||
进口 | 1/8″ NPTF | 1/4″ NPTF | 7/16″-20 (UNF-3B) 阴 |
出口 | 1/8″ NPTF | 1/4″ NPTF* | 7/16″-20 (UNF-3B) 阴** |
*1/8″带管塞的 NPTF 上游孔 **附带连接 1/4″NPTF 的接头 |
应用
适合在进口压力为 20 至 700 bar 时对气体或液体进行过滤 差别压力取决于使用的滤膜类型。 所有换膜过滤器都可高温高压灭菌。 换膜过滤器 XX44 047 00 配备有背压支撑网。 在装有滤膜时,如果使用 PTFE 涂层支撑网、XX44 047 02 和 XX44 047 04,则可高温高压灭菌。
替换部件 | |
1 | 六角盖头螺丝 |
2 | 顶板 |
3 | 背压支撑网 |
4 | O-型圈 |
5 | 支撑网 |
6 | 下排放支持结构 |
7 | 底板 |
8 | 管塞 |
Whatman7184-009硝酸纤维素膜 WCN WH 90MM 0.45um 25/PK
【简单介绍】
【简单介绍】
【详细说明】
上海金畔生物科技有限公司
文章号19690900-19690900
Whatman1213-500定性滤纸-预折叠级GR 113 FF 50CM 100/PK
【简单介绍】
【简单介绍】
【详细说明】
上海金畔生物科技有限公司
文章号20232381-20232381
Millipore 47mm玻璃过滤漏斗带不锈钢支撑网xx1004730
Millipore 47mm玻璃过滤漏斗带不锈钢支撑网xx1004730
说明: 玻璃换膜过滤器,带不锈钢支撑网,47 mm
数量/包装: 1
进口接头: 漏斗
直径,cm (in): 7.6
高度,cm (in): 22.9
出口接头: 8 号孔塞,置于 1 L 和 4 L 标准抽滤瓶上
结构材质: 硼硅酸盐玻璃漏斗和底座;阳极化铝弹簧夹;硅胶塞
灭菌: 紫外线灭菌或不装膜高压高温灭菌
滤膜直径,mm: 47
密封材质: PTFE
产品名称: 换膜过滤器
过滤面积,cm2: 9.6
Millipore 47mm玻璃过滤漏斗带不锈钢支撑网xx1004730技术指标:
结构材质 | 硼硅酸盐玻璃漏斗和底座;阳极化铝弹簧夹;硅胶塞 |
XX10 047 00 | 粗糙的熔结玻璃底座 |
XX10 04720 | PTFE 涂层漏斗和底座 |
XX10 047 30 | 不锈钢支撑网底座 |
滤膜直径,mm | 47 |
过滤面积,cm2 | 9.6 |
漏斗容量,mL | 300;提供附件 1L |
预过滤膜直径,mm | 35 (thick depth prefilter) or 47 (membrane prefilter) |
出口接头 | 8 号孔塞,置于 1 L 和 4 L 标准抽滤瓶上 |
尺寸 | |
高,cm | 22.9 |
直径,cm | 7.6 |
灭菌方法 | |
XX10 047 00 和 XX10 047 30 | 紫外线灭菌或不装膜高压高温灭菌 |
XX10 047 20 | 装膜高压高温灭菌 |
半尺Pennchem(R)CT (称呼 : 2)日本三博特sanplatec
确认材料的耐药性 >> 耐药性检索
fisher防脱载玻片 预清洁 superfrost生物显微镜玻片 75x25mm 12-550-343-赛默飞中国代理商
产品名称:
|
fisher防脱载玻片 预清洁 superfrost生物显微镜玻片 75x25mm 12-550-343 |
产品型号:
|
产品特点 |
美国fisher载玻片● 一端喷有磨砂标签,可书写● 标签上的标记在一般实验程序中不易被擦掉或洗掉● 厚度约 1 mm |
产品详细信息: |
美国fisher载玻片 ● 一端喷有磨砂标签,可书写 |
BAMBANKER® 无血清细胞冻存液
BAMBANKER® 无血清细胞冻存液
BAMBANKER®
- 产品特性
- 相关资料
- Q&A
- 参考文献
BAMBANKER®
无血清细胞冻存液
BAMBANKER® 是一种无血清细胞冻存液。可在-80℃长期保存细胞(肿瘤细胞和常规细胞)。 |
◆产品特性
● 即用型细胞冻存液
● 无需分步降温,直接使用
● 无需稀释
● 无需程序降温盒
● -80℃长期保存
● 无血清
◆无血清冻存液的优点
● 与含血清类型相比,批次间的成分组成差异小,可保持稳定的品质。
● 不含血清,因此没有因动物源的未知成分和感染物质所产生的影响与风险。
● 可对无血清驯化细胞进行冷冻,节省再驯化步骤。
◆操作流程
1)收集对数生长期的细胞(5×105-1×107个细胞)
2)用1mL该细胞冻存液悬浮细胞,置于冻存管中,不需预冷,直接-80℃冷冻保存,也可在-80℃冻存12小时后可
转移至液氮中保存。
3)用恒温箱或者水浴锅快速复苏细胞
*冷冻细胞必须处于对数生长期
◆无菌检测**
内毒素:生色底物法
支原体:荧光抗体法
真菌和细菌:依据日本药典
(**:可索取检验证书)
BAMBANKER® Direct
BAMBANKER Direct是“无血清型”细胞冻存液。
◆BAMBANKER® Direct无需离心收集细胞
① 不需冻存前预处理,操作简便
② 不需稀释,直接使用
③ 无需分步降温,直接使用
④ 可快速、长期冻存细胞(-80℃或液氮)
⑤ 不含血清
◆BAMBANKER® Direct冻存步骤VS常规冻存步骤
使用本产品无需经过离心等复杂步骤,只需往培养基内添加与培养液等量的BAMBANKER Direct,再分装到冻存管,置于-80℃便可冻存细胞。
◆应用
【BAMBANKER使用例】
细胞名称 | 保存时间 |
生存率 | ||
BAMBANKER | 公司A(含血清) |
公司A(不含血清) |
||
P3U1 (小鼠骨髓瘤细胞系) |
12个月 |
95% | 95% | 70% |
K562 (人白血病细胞系) |
12个月 |
73% | 70% | 60% |
人体胃黏膜上皮细胞 | 10个月 |
100% | 62% | 56% |
human γδT cells (人γδT细胞) |
10个月 |
65% | 37% | 35% |
Daudi (人 B细胞系) |
12个月 |
100% | 100% | 92% |
PC12 (大鼠源肾上腺嗜铬细胞瘤) |
11个月 |
95% | 59% | 20% |
human B cell line (人B细胞系) |
9个月 |
74% | 54% | 35% |
OKT4 (小鼠杂交瘤细胞) |
12个月 |
100% | 100% | 92% |
B细胞系 (猴) |
10个月 | 56% | 40% | 18% |
【低温冻存实验证明以下细胞保存完好】
3T3‐L1(小鼠前脂肪细胞系) |
A431(人扁平上皮癌细胞系) |
BAEC(牛主动脉血管内皮细胞系) |
Balb/3T3(小鼠成纤维细胞系) |
C2C12(小鼠骨骼肌细胞系) |
Daudi(人B细胞系) |
ECV304(人脐静脉内皮细胞系) |
H295R(肾上腺皮质细胞) |
HEK293(人胚胎肾细胞系) |
HEK293T(人胚胎肾细胞系) |
HeLa(人子宫颈癌细胞系) |
HeLa S3(人子宫颈癌细胞系) |
HepG2(人肝癌细胞系) |
HFF(人正常成纤维细胞系) |
Huh7(人肝癌细胞系) |
Jurkat(人白血病T细胞系) |
K562(人慢性骨髓性白血病细胞系) |
KATOIII (人胃癌上皮细胞系) |
KLM‐1(人胰腺癌细胞系) |
MDCK(犬肾小管上皮细胞系) |
MEF(小鼠胚胎成纤维细胞) |
NIH3T3(小鼠胚胎皮肤细胞) |
OKT4(小鼠杂交瘤细胞) |
OP9(小鼠骨髓基质细胞) |
P3U1(小鼠骨髓瘤细胞系) |
PANC‐1(人胰腺癌细胞系) |
PC12(大鼠源肾上腺嗜铬细胞瘤) |
RPE(人视网膜上皮细胞系) |
SNL(小鼠胚胎成纤维细胞) |
TSU‐Pr1(人前列腺癌细胞系) |
Vero(非洲绿猴肾细胞系) |
human γδT cells (人γδT细胞) |
human B cell line (人B细胞系) |
HDF(人皮肤成纤维细胞) | HCC20(人乳腺原发性导管癌细胞) | BMMCs(人骨髓单核细胞系) |
BMMCs(猪骨髓单核细胞系) | BMSCs(马骨髓间充质干细胞系) | C1(人成纤维细胞系) |
CEF(牛胚胎成纤维细胞) | CHO-K1(中国仓鼠卵巢细胞系) | DPCs(大鼠牙髓细胞) |
DPCs(人牙髓细胞) | ESCs(人胚胎干细胞) | EVT(人绒毛外滋养层细胞) |
GH3(大鼠垂体瘤细胞) | Gli36(胶质瘤细胞系) |
h1(人类胚胎干细胞) |
h9(人类胚胎干细胞) | HN4(人口腔上皮细胞系) |
HS-RMS-2 (多形性横纹肌肉瘤细胞系) |
IPS(人诱导性多能干细胞) |
LNCaP clone FGC (人前列腺癌细胞) |
MCF 10A(人正常乳腺细胞) |
MEF-BL/6-1 (小鼠胚胎成纤维细胞) |
MNCs(人单核细胞) | MSCs(大鼠间充质干细胞系) |
PBMCs(人外周血单个核细胞) | PDL(人牙周膜细胞) | pES(大鼠孤雌胚胎干细胞系) |
Sf9(草地贪夜蛾细胞系) | U251(胶质瘤细胞系) | U87(胶质瘤细胞系) |
VT(人绒毛膜滋养层细胞) | 癌症干细胞 | 大鼠肝细胞 |
猴B细胞系 |
人外周血活化淋巴细胞 |
永生化人肌肉细胞 |
小鼠脾脏活化淋巴细胞 |
小鼠ES细胞系 |
人胃上皮细胞 |
大鼠神经祖细胞 | 大鼠脂肪细胞 | 狗肿瘤细胞 |
胶质瘤细胞系 | 牛脂肪细胞 | 牛子宫内膜上皮细胞 |
人扁桃体细胞 | 人肝细胞 | 人骨髓CD34+细胞 |
人巨噬细胞 | 人淋巴细胞 | 人输卵管上皮细胞 |
人胎儿卵巢成纤维细胞 | 人胎儿卵巢体细胞 | 人自然杀伤细胞 |
神经祖细胞 | 小鼠颅骨成骨细胞 | 心肌祖细胞 |
猪成纤维细胞 |
ES细胞(小鼠)使用实例
T.Hikichi,et al; Differentiation Potential of Parthenogenetic Embryonic Stem Cells Is Improved by Nuclear Transfer, Stem Cells, 2007, 25, 46-53
更多相关资料请点击文字:
BAMBANKER® 与自制冻存液的冻存效果比较
Bambanker® 与其他相关产品的比较
细胞冻存效果验证
细胞冻存液类型
1.Bambanker®
2.Medium with serum (含血清,A公司)
3.Serum-free Medium (无血清,A公司)
实验结果
*1:细胞-80℃的保存时间
相关PDF
BAMBANKER® 无血清细胞 冻存液新版 |
Wako BAMBANKER冻存液(新手册) 细胞种类列举 |
BAMBANKER细胞冻存液 –冻存解冻步骤说明 (终端).pdf |
1. |
Q:为什么我使用了BAMBANKER® 来保存细胞,但是存活率依然不高? A:请冻存前确保细胞处于生长对数期,并且冻存时细胞数目控制在5×105~1×107/mL冻存 液。 |
2. |
Q:我们实验室已经有固定的冻存程序了,换了你们的BAMBANKER® 可以还继续用原来程序降温的方法冻存吗? A:虽然本产品可以无需程序降温冻存细胞,但如果通过程序降温盒等适当控制了温度下降的速度,效果更佳。 |
3. |
Q:哪些细胞株(系)适合使用BAMBANKER® 来进行细胞冷冻保存? A:几乎所有细胞株(系)都可以使用BAMBANKER® 进行冻存。对于较为宝贵的ES/iPS细胞的保存尤其适用。官网上所列举的细胞系均已经过测试验证。 但也并不排除可能有某些细胞株是不适合使用BAMBANER® 来进行冻存的,用户在没有确认是否可使用时,建议在进行正式细胞冻存之前先进行预实验。 |
4. |
Q:无血清冻存液相比传统含血清冻存液有什么优势? A:无血清冻存液因不含有动物血清,质量更稳定,批间差小;同时未知生物成分或感染性物质污染细胞的几率也极低,尤其对于ES/iPS细胞等有可能用于再生医疗的细胞安全得以严格保障;可以直接冻存无血清培养的细胞,免去无血清再驯化的步骤;另外BAMBANKER® 无血清细胞冻存液不需要像传统的血清冻存液需要程序降温,减少了用户的繁琐操作,节省了时间。 |
5. |
Q:BAMBANKER® 在冷冻保存细胞的过程中起什么作用? A:BAMBANKER® 无血清细胞冻存液使用了DMSO等作为保护剂,在冻存细胞时能以1℃/min左右的温度下降而逐渐冻结,在此过程中,细胞内的水分子被置换成冻结保护剂,抑制胞内和细胞周边的冰晶的形成,防止细胞膜和细胞器结构损伤,防止蛋白变质。 |
6. |
Q:未使用的BAMBANKER® 无血清细胞冻存液应该如何保存? A:2-10℃避光保存。开封后尽快使用。请注意保质期为自生产日期起24个月。 |
7. |
Q:BAMBANKER® 能否使用于医疗领域? A:BAMBANKER® 仅供科研使用,不能使用于人体或医疗领域。 |
BAMBANKER™参考文献
[1] |
Zhang C., Seo J., Nakamura T. (2018) Cellular Approaches in Investigating Argonaute2-Dependent RNA Silencing. In: Okamura K., Nakanishi K. (eds) Argonaute Proteins. Methods in Molecular Biology, vol 1680. Humana Press, New York, NY. |
[2] |
Sharma, A., M¨ucke, M., & Seidman, C. E. (2018). Human induced pluripotent stem cell production and expansion from blood using a non-integrating viral reprogramming vector. Current Protocols in Molecular Biology,122, e58. doi: 10.1002/cpmb.58. |
[3] |
Souta Motoike, Mikihito Kajiya, Nao Komatsu, et al. Cryopreserved clumps of mesenchymal stem cell/extracellular matrix complexes retain osteogenic capacity and induce bone regeneration. Stem Cell Res Ther. 2018; 9: 73. Published online 2018 Mar 21. doi: 10.1186/s13287-018-0826-0. |
[4] |
Konuma T1, Kohara C1, Watanabe E2, et al. Monocyte subsets and their phenotypes during treatment with BCR-ABL1 tyrosine kinase inhibitors for Philadelphia chromosome-positive leukemia. Hematol Oncol. 2018 Apr;36(2):451-456. doi: 10.1002/hon.2497. Epub 2018 Feb 12. |
[5] |
Srijaya Thekkeparambil Chandrabose, Sandhya Sriram, et al. Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming. Stem Cell Research & Therapy 2018 9:68. |
[6] |
Evans, Michael A. et al. "Macrophage-Mediated Delivery of Light Activated Nitric Oxide Prodrugs with Spatial, Temporal and Concentration Control." Chemical Science (2018): n. pag. Web. doi:10.1039/C8SC00015H. |
[7] |
Jauregui, C.; Yoganarasimha, S.; Madurantakam, P. Mesenchymal Stem Cells Derived from Healthy and Diseased Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds. Bioengineering 2018, 5, 8. |
[8] |
Khamaikawin, Wannisa et al. Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1. Molecular Therapy – Methods & Clinical Development , Volume 9,23-32. |
[9] |
Masako Okumura, Toyoaki Natsume, Masato T Kanemaki, Tomomi Kiyomitsu. Optogenetic reconstitution reveals that Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble. bioRxiv 277202; doi: https://doi.org/10.1101/277202 |
[10] |
https://labchem.wako-chem.co.jp/journal/docs/proup10.pdf<链接> |
[11] |
Ince T A, Aster J C. In vitro culture conditions for T-cell acute lymphoblastic leukemia/lymphoma: U.S. Patent 9,683,217[P]. 2017-6-20. |
[12] |
Morris C D, Azadnia P, de Val N, et al. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers[J]. mBio, 2017, 8(1): e00036-17.<链接> |
[13] |
Lee K, Saetern O C, Nguyen A, et al. Derivation of Leptomeninges Explant Cultures from Postmortem Human Brain Donors[J]. JoVE (Journal of Visualized Experiments), 2017 (119): e55045-e55045.<链接> |
[14] |
Buenrostro J D, Corces R, Wu B, et al. Single-cell epigenomics maps the continuous regulatory landscape of human hematopoietic differentiation[J]. bioRxiv, 2017: 109843.<链接> |
[15] |
Edmonds R E, Garvican E R, Smith R K W, et al. Influence of commonly used pharmaceutical agents on equine bone marrow‐derived mesenchymal stem cell viability[J]. Equine veterinary journal, 2017, 49(3): 352-357.<链接> |
[16] |
Jitraruch S, Dhawan A, Hughes R D, et al. Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation[J]. Cell transplantation, 2017.<链接> |
[17] |
Usarek E, Barańczyk-Kuźma A, Kaźmierczak B, et al. Validation of qPCR reference genes in lymphocytes from patients with amyotrophic lateral sclerosis[J]. PloS one, 2017, 12(3): e0174317.<链接> |
[18] |
Gagnon E, Connolly A, Dobbins J, et al. Studying Dynamic Plasma Membrane Binding of TCR-CD3 Chains During Immunological Synapse Formation Using Donor-Quenching FRET and FLIM-FRET[J]. The Immune Synapse: Methods and Protocols, 2017: 259-289.<链接> |
[19] |
Foster K, Chaddock J, Penn C, et al. Non-cytotoxic protein conjugates: U.S. Patent 9,474,807[P]. 2016-10-25. |
[20] |
Araki N, Iida M, Machida K. Bioassay method for detecting physiologically active substance: U.S. Patent 9,316,588[P]. 2016-4-19. |
[21] |
Sazinsky S, Michaelson J S, Sathyanarayanan S, et al. Antibodies to icos: U.S. Patent Application 15/076,867[P]. 2016-3-22 |
[22] |
李凯. Studies on Innate Immune Activation by HBV Infection and Its Sensing Mechanism in Hepatocytes[J]. 2016. |
[23] |
Ip L R H. Effect of INPP4B loss on DNA repair and treatment strategies in ovarian cancer[D]. UCL (University College London), 2016. |
[24] |
Thakkar A. Novel hormonal combination therapy for triple negative breast cancer[D]. University of Miami, 2016. |
[25] |
Pakdaman Y. In-vitro characterization of STUB1 mutations in recessively inherited spinocerebellar ataxia-16[D]. The University of Bergen, 2016. |
[26] |
Caxaria S. Induced pluripotent stem cells (iPSCs) for research and therapy: induction of hepatic differentiation in iPSCs and evaluation of their quality as a model of in vivo development in the context of coagulation[D]. UCL (University College London), 2016.<链接> |
[27] |
Bayne R A, Donnachie D J, Kinnell H L, et al. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2[J]. MHR: Basic science of reproductive medicine, 2016, 22(9): 622-633.<链接> |
[28] |
Friedrich D. HIF-1 [alpha] Drives Fungal Immunity in Human Macrophages[D]. Universität zu Lübeck, 2016.<链接> |
[29] |
Yasuda M, Kawabata J, Akieda-Asai S, et al. Guanylyl cyclase C and guanylin reduce fat droplet accumulation in cattle mesenteric adipose tissue[J]. The Journal of Veterinary Science, 2016.<链接> |
[30] |
Campa M J, Moody M A, Zhang R, et al. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery[J]. Cancer Immunology, Immunotherapy, 2016, 65(2): 171-180.<链接> |
[31] |
Kobayashi T, Yagi Y, Nakamura T. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells[J]. Chromosome and Genomic Engineering in Plants: Methods and Protocols, 2016: 147-155.<链接> |
[32] |
Shikata H, Kaku M, Kojima S I, et al. The effect of magnetic field during freezing and thawing of rat bone marrow-derived mesenchymal stem cells[J]. Cryobiology, 2016, 73(1): 15-19.<链接> |
[33] |
Hirakawa M, Matos T, Liu H, et al. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells[J]. JCI insight, 2016, 1(18).<链接> |
[34] |
Durruthy-Durruthy J, Sebastiano V, Wossidlo M, et al. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming[J]. Nature genetics, 2016, 48(1): 44-52.<链接> |
[35] |
Caxaria S, Arthold S, Nathwani A C, et al. Generation of integration-free patient specific iPS cells using episomal plasmids under feeder free conditions[J]. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization, 2016: 355-366.<链接> |
[36] |
Nonomura Y, Otsuka A, Nakashima C, et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients[J]. Oncoimmunology, 2016, 5(12): e1248327.<链接> |
[37] |
Burridge P W, Diecke S, Matsa E, et al. Modeling cardiovascular diseases with patient-specific human pluripotent stem cell-derived cardiomyocytes[J]. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization, 2016: 119-130.<链接> |
[38] |
Mendonça M C P, Soares E S, de Jesus M B, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood–Brain Barrier: An in Vitro and in Vivo Study[J]. Molecular pharmaceutics, 2016, 13(11): 3913-3924.<链接> |
[39] |
Eldaim A, Hashimoto O, Ohtsuki H, et al. Expression of uncoupling protein 1 in bovine muscle cells[J]. Journal of animal science, 2016, 94(12): 5097-5104.<链接> |
[40] |
Zhen A, Rezek V, Youn C, et al. Stem-cell based engineered immunity against HIV infection in the humanized mouse model[J]. JoVE (Journal of Visualized Experiments), 2016 (113): e54048-e54048.<链接> |
[41] |
Bastian N A, Bayne R A, Hummitzsch K, et al. Regulation of fibrillins and modulators of TGFβ in fetal bovine and human ovaries[J]. Reproduction, 2016, 152(2): 127-137.<链接> |
[42] |
Eto K, Takayama N, Nakamura S, et al. Method for producing differentiated cells: U.S. Patent 9,200,254[P]. 2015-12-1. |
[43] |
Eto K, Takayama N, Nakamura S, et al. Novel Method for Producing Differentiated Cells: U.S. Patent Application 14/925,508[P]. 2015-10-28. |
[44] |
Yamashita J, Takeda M. Cd82-positive cardiac progenitor cells: U.S. Patent Application 15/308,147[P]. 2015-4-16. |
[45] |
Cai Y, Sugimoto C, Arainga M, et al. Preferential Destruction of Interstitial Macrophages over Alveolar Macrophages as a Cause of Pulmonary Disease in Simian Immunodeficiency Virus–Infected Rhesus Macaques[J]. The Journal of Immunology, 2015, 195(10): 4884-4891.<链接> |
[46] |
Kojima S I, Kaku M, Kawata T, et al. Cranial suture-like gap and bone regeneration after transplantation of cryopreserved MSCs by use of a programmed freezer with magnetic field in rats[J]. Cryobiology, 2015, 70(3): 262-268.<链接> |
[47] |
Egawa E Y, Kitamura N, Nakai R, et al. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation[J]. Biomaterials, 2015, 54: 158-167.<链接> |
[48] |
Durruthy J D, Sebastiano V. Derivation of GMP-Compliant Integration-Free hiPSCs Using Modified mRNAs[J]. Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations, 2015: 31-42.<链接> |
[49] |
Sato Y, Sasaki T, Takahashi S, et al. Development of a highly reproducible system to evaluate inhibition of cytochrome P450 3A4 activity by natural medicines[J]. Journal of Pharmacy & Pharmaceutical Sciences, 2015, 18(4): 316-327.<链接> |
[50] |
Burridge P W, Holmström A, Wu J C. Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells[J]. Current protocols in human genetics, 2015: 21.3. 1-21.3. 15.<链接> |
[51] |
Käding N. Hypoxia Regulates Host Cell Metabolism and Thereby Enhancing Clamydia Pneumonia Growth[D]. Zentrale Hochschulbibliothek Lübeck, 2015.<链接> |
[52] |
Lu S. Calcium Dependent Regulatory Mechanism in Wolfram Syndrome: A Dissertation[J]. 2015. |
[53] |
Garvican E R, Cree S, Bull L, et al. Viability of equine mesenchymal stem cells during transport and implantation[J]. Stem cell research & therapy, 2014, 5(4): 1.<链接> |
[54] |
Deng X, Terunuma H, Nieda M. Method for producing nk cell-enriched blood preparation: U.S. Patent Application 14/508,745[P]. 2014-10-7. |
[55] |
Foster K, Chaddock J, Penn C, et al. Non-cytotoxic protein conjugates: U.S. Patent 8,778,634[P]. 2014-7-15. |
[56] |
Ramathal C Y, Dumuthy-Durruthy J, Pera R A R, et al. Generation of male germ cells: U.S. Patent Application 14/904,396[P]. 2014-7-10 |
[57] |
Ince T A. Assays, methods and kits for analyzing sensitivity and resistance to anti-cancer drugs, predicting a cancer patient's prognosis, and personalized treatment strategies: U.S. Patent Application 14/894,595[P]. 2014-6-4. |
[58] |
Nishio M, Saeki K. Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes[J]. Methods Enzymol, 2014, 537: 177-197.<链接> |
[59] |
Durruthy-Durruthy J, Briggs S F, Awe J, et al. Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions[J]. PloS one, 2014, 9(4): e94231.<链接> |
[60] |
Koido S, Homma S, Okamoto M, et al. Treatment with Chemotherapy and Dendritic Cells Pulsed with Multiple Wilms' Tumor 1 (WT1)–Specific MHC Class I/II–Restricted Epitopes for Pancreatic Cancer[J]. Clinical Cancer Research, 2014, 20(16): 4228-4239.<链接> |
[61] |
Patz Jr E F. Antibodies Expressed by Intratumoral B Cells as the Basis for a Diagnostic Test for Lung Cancer[R]. DUKE UNIV DURHAM NC, 2014.<链接> |
[62] |
Kaku M, Shimasue H, Ohtani J, et al. A case of tooth autotransplantation after long-term cryopreservation using a programmed freezer with a magnetic field[J]. The Angle Orthodontist, 2014, 85(3): 518-524.<链接> |
[63] |
Kaku M, Koseki H, Kojima S, et al. Cranial bone regeneration after cranioplasty using cryopreserved autogenous bone by a programmed freezer with a magnetic field in rats[J]. CryoLetters, 2014, 35(6): 451-461.<链接> |
[64] |
Koido S, Kinoshita S, Mogami T, et al. Immunological assessment of cryotherapy in breast cancer patients[J]. Anticancer research, 2014, 34(9): 4869-4876.<链接> |
[65] |
Sazuka S, Katsuno T, Nakagawa T, et al. Fibrocytes are involved in inflammation as well as fibrosis in the pathogenesis of Crohn's disease[J]. Digestive diseases and sciences, 2014, 59(4): 760-768.<链接> |
[66] |
Lin S L, Lee S Y, Lin Y C, et al. Evaluation of mechanical and histological properties of cryopreserved human premolars under short-term preservation: A preliminary study[J]. Journal of Dental Sciences, 2014, 9(3): 244-248.<链接> |
[67] |
Poole E, Reeves M, Sinclair J H. The use of primary human cells (fibroblasts, monocytes, and others) to assess human cytomegalovirus function[J]. Human Cytomegaloviruses: Methods and Protocols, 2014: 81-98.<链接> |
[68] |
Garvican E R, Dudhia J, Alves A L, et al. Mesenchymal stem cells modulate release of matrix proteins from tendon surfaces in vitro: a potential beneficial therapeutic effect[J]. Regenerative medicine, 2014, 9(3): 295-308.<链接> |
[69] |
Skinner J A, Zurawski S M, Sugimoto C, et al. Immunologic characterization of a rhesus macaque H1N1 challenge model for candidate influenza vaccine assessment[J]. Clinical and Vaccine Immunology, 2014: CVI. 00547-14.<链接> |
[70] |
Terunuma H, Deng X, Nieda M. Method for producing nk cell-enriched blood preparation: U.S. Patent Application 14/780,394[P]. 2013-3-27. |
[71] |
Cho M, Yamazaki T, Endo M, et al. Anti-Phospholipase D4 Antibody: U.S. Patent Application 14/375,266[P]. 2013-1-31. |
[72] |
Bhandari S. Radiological, clinical and laboratory based studies in the pathogenesis of desmoid tumours in familial adenomatous polyposis[J]. 2013. |
[73] |
Gonzàlez Juncà A. Study of molecular mechanisms implicated in the TGF-beta oncogenic effect in Glioma[J]. 2013. |
[74] |
Koseki H, Kaku M, Kawata T, et al. Cryopreservation of osteoblasts by use of a programmed freezer with a magnetic field[J]. CryoLetters, 2013, 34(1): 10-19.<链接> |
[75] |
Naito H, Yoshimura M, Mizuno T, et al. The advantages of three‐dimensional culture in a collagen hydrogel for stem cell differentiation[J]. Journal of Biomedical Materials Research Part A, 2013, 101(10): 2838-2845.<链接> |
[76] |
Stec M, Baran J, Szatanek R, et al. Properties of monocytes generated from haematopoietic CD34+ stem cells from bone marrow of colon cancer patients[J]. Cancer Immunology, Immunotherapy, 2013, 62(4): 705-713.<链接> |
[77] |
Müller L, Brighton L E, Carson J L, et al. Culturing of human nasal epithelial cells at the air liquid interface[J]. Journal of visualized experiments: JoVE, 2013 (80).<链接> |
[78] |
Kalaszczynska I, Ruminski S, Platek A E, et al. Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media: how to explain and how to manage?[J]. BioResearch open access, 2013, 2(5): 356-363.<链接> |
[79] |
Tamai Y, Hasegawa A, Takamori A, et al. Potential Contribution of a Novel Tax Epitope–Specific CD4+ T Cells to Graft-versus-Tax Effect in Adult T Cell Leukemia Patients after Allogeneic Hematopoietic Stem Cell Transplantation[J]. The Journal of Immunology, 2013, 190(8): 4382-4392.<链接> |
[80] |
Kasai K, Nakashima H, Liu F, et al. Toxicology and biodistribution studies for MGH2. 1, an oncolytic virus that expresses two prodrug-activating genes, in combination with prodrugs[J]. Molecular Therapy-Nucleic Acids, 2013, 2: e113.<链接> |
[81] |
Deng X, Terunuma H, Nieda M. Method for producing nk cell-enriched blood preparation: U.S. Patent Application 13/980,777[P]. 2012-1-17. |
[82] |
Somm E, Bonnet N, Martinez A, et al. A botulinum toxin–derived targeted secretion inhibitor downregulates the GH/IGF1 axis[J]. The Journal of clinical investigation, 2012, 122(9): 3295.<链接> |
[83] |
Takaoka E, Sonobe H, Akimaru K, et al. Multiple sites of highly amplified DNA sequences detected by molecular cytogenetic analysis in HS-RMS-2, a new pleomorphic rhabdomyosarcoma cell line[J]. American journal of cancer research, 2012, 2(2): 141.<链接> |
[84] |
Fahlbusch F B, Dawood Y, Hartner A, et al. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated via oxygen tension: implications for intrauterine growth restriction?[J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2012, 25(11): 2209-2215.<链接> |
[85] |
Aloé S, Weber F, Behr B, et al. Modulatory effects of bovine seminal plasma on uterine inflammatory processes[J]. Reproduction in domestic animals, 2012, 47(1): 12-19.<链接> |
[86] |
Gupta A, Bhakta S. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis[J]. Journal of antimicrobial chemotherapy, 2012, 67(6): 1380-1391.<链接> |
[87] |
Saeki K. Feeder-Free Culture for High Efficiency Production of Subculturable Vascular Endothelial Cells from Human Embryonic Stem Cells[J]. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols, 2012: 277-294.<链接> |
[88] |
Yamazaki T, Okabe H, Kobayashi S, et al. Cancer stem cell mass and process for production thereof: U.S. Patent Application 13/878,181[P]. 2011-10-6. |
[89] |
Deng X, Terunuma H, Nieda M. Method for producing nk cell-enriched blood product: U.S. Patent Application 13/577,476[P]. 2011-2-4. |
[90] |
Sugii S, Kida Y, Berggren W T, et al. Feeder-independent ips cell derivation from human and mouse adipose stem cells[J]. Nature protocols, 2011, 6(3): 346.<链接> |
[91] |
Shinada T, Akimoto T, Zhu Y, et al. Modulation of viability of live cells by focused ion‐beam exposure[J]. Biotechnology and bioengineering, 2011, 108(1): 222-225.<链接> |
[92] |
Huang M S, Chang W J, Huang H M, et al. Effects of transportation time after extraction on the magnetic cryopreservation of pulp cells of rat dental pulp[J]. Journal of Dental Sciences, 2011, 6(1): 48-52.<链接> |
[93] |
Sato D, Suzuki Y, Kano T, et al. Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse therapy in IgA nephropathy patients[J]. Nephrology Dialysis Transplantation, 2011, 27(3): 1090-1097.<链接> |
[94] |
Kamada H, Kaku M, Kawata T, et al. In-vitro and in-vivo study of periodontal ligament cryopreserved with a magnetic field[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2011, 140(6): 799-805.<链接> |
[95] |
Bui H T, Wakayama S, Mizutani E, et al. Essential role of paternal chromatin in the regulation of transcriptional activity during mouse preimplantation development[J]. Reproduction, 2011, 141(1): 67-77.<链接> |
[96] |
Takata Y, Kishine H, Sone T, et al. Generation of iPS cells using a BacMam multigene expression system[J]. Cell structure and function, 2011, 36(2): 209-222.<链接> |
[97] |
Benko Z, Zhao R Y. Zeocin for selection of bleMX6 resistance in fission yeast[J]. Biotechniques, 2011, 51(1): 57-60.<链接> |
[98] |
Abedini S, Kaku M, Kawata T, et al. Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues[J]. Cryobiology, 2011, 62(3): 181-187.<链接> |
[99] |
Oshima-Sudo N, Li Q, Hoshino Y, et al. Optimized method for culturing outgrowth endothelial progenitor cells[J]. Inflammation and Regeneration, 2011, 31(2): 219-227.<链接> |
[100] |
Araki N. Bioassay method for antibody against thyroid-stimulating hormone receptor, measurement kit for the antibody, and novel genetically modified cell for use in the bioassay method or the measurement kit: U.S. Patent Application 13/381,402[P]. 2010-6-24. |
[101] |
Foster K, Chaddock J, Marks P, et al. Fusion proteins: U.S. Patent 7,659,092[P]. 2010-2-9. |
[102] |
Mieno S, Boodhwani M, Robich M P, et al. Effects of diabetes mellitus on VEGF‐induced proliferation response in bone marrow derived endothelial progenitor cells[J]. Journal of cardiac surgery, 2010, 25(5): 618-625.<链接> |
[103] |
Kaku M, Kamada H, Kawata T, et al. Cryopreservation of periodontal ligament cells with magnetic field for tooth banking[J]. Cryobiology, 2010, 61(1): 73-78.<链接> |
[104] |
Kawata T, Kaku M, Fujita T, et al. Water molecule movement by a magnetic field in freezing for tooth banking[J]. Biomedical Research, 2010, 21(4).<链接> |
[105] |
Lee S Y, Chiang P C, Tsai Y H, et al. Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells[J]. Journal of Endodontics, 2010, 36(8): 1336-1340.<链接> |
[106] |
Huang Y H, Yang J C, Wang C W, et al. Dental stem cells and tooth banking for regenerative medicine[J]. Journal of Experimental & Clinical Medicine, 2010, 2(3): 111-117.<链接> |
[107] |
Kwon H J, Enomoto T, Shimogawara M, et al. Benchmarks[J]. Biotechniques, 2010, 48: 460-462.<链接> |
[108] |
Shimizu Y, Takamori A, Utsunomiya A, et al. Impaired Tax‐specific T‐cell responses with insufficient control of HTLV‐1 in a subgroup of individuals at asymptomatic and smoldering stages[J]. Cancer science, 2009, 100(3): 481-489.<链接> |
[109] |
Park H S, Cho S G, Park M J, et al. Bone marrow T cells are superior to splenic T cells to induce chimeric conversion after non-myeloablative bone marrow transplantation[J]. The Korean journal of internal medicine, 2009, 24(3): 252.<链接> |
[110] |
Enosawa S, Miyamoto Y, Ikeya T. Frozen cell immobilized product, primary hepatocyte culture tool, and method for producing primary hepatocyte culture tool: U.S. Patent Application 12/738,809[P]. 2008-9-11. |
[111] |
DePinho R A, Stommel J M. Receptor tyrosine kinase profiling: U.S. Patent Application 12/450,820[P]. 2008-4-11. |
[112] |
Mieno S, Clements R T, Boodhwani M, et al. Characteristics and Function of Cryopreserved Bone Marrow–Derived Endothelial Progenitor Cells[J]. The Annals of thoracic surgery, 2008, 85(4): 1361-1366.<链接> |
[113] |
Warren C. The Response of HN4 Cells to Porphyromonas gingivalis DNA[D]. , 2008. |
[114] |
Hikichi T, Wakayama S, Mizutani E, et al. Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接> |
[115] |
Zaidi S K, Pande S, Pratap J, et al. Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential[J]. Proceedings of the National Academy of Sciences, 2007, 104(50): 19861-19866.<链接> |
[116] |
Hikichi T, Wakayama S, Mizutani E, et al. Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接> |
[117] |
Liu D G, Kobayashi T, Onishi A, et al. Relation between human decay‐accelerating factor (hDAF) expression in pig cells and inhibition of human serum anti‐pig cytotoxicity: value of highly expressed hDAF for xenotransplantation[J]. Xenotransplantation, 2007, 14(1): 67-73.<链接> |
[118] |
Ishii H, Iinuma A, Osumi K, et al. Canine tumor treatment method, pharmaceutical formulation applied thereto, and method of cryogenically preserving cells used therewith: U.S. Patent Application 11/465,892[P]. 2006-8-21. |
[119] |
Hatoya S, Sugiyama Y, Torii R, et al. Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC of canine oocytes[J]. Theriogenology, 2006, 66(5): 1083-1090.<链接> |
[120] |
Sasaki M, Kato Y, Yamada H, et al. Development of a novel serum‐free freezing medium for mammalian cells using the silk protein sericin[J]. Biotechnology and applied biochemistry, 2005, 42(2): 183-188.<链接> |
[121] |
Haynes J E. Pseudonyms of Authors: Including Anonyms and Initialisms[M]. JE Haynes, 1882.<链接> |
产品编号 | 产品名称 | 产品规格 | 产品等级 | 产品价格 |
302-14681 | BAMBANKER BAMBANKER冻存液 |
120mL | – | – |
306-14684 | BAMBANKER BAMBANKER冻存液 |
20mLx5 | – | – |
306-95921 | BAMBANKER Direct BAMBANKER直接冻存液 |
20mL | – | – |
伯乐Bio-Beads凝胶过滤填料S-X8 1523350
伯乐Bio-Beads凝胶过滤填料S-X8 1523350
Bio–Beads S–X 介质是中性、多孔的聚苯乙烯二乙烯基苯微球体,用于亲脂性多聚物和有机洗脱溶质的分子量 排阻层析。分子量400–14,000 的排阻范围,可用于分离分子量小的有机多聚物和其它疏水物质,如杀虫剂、灭鼠 剂、多环芳香化合物和不饱和脂类。使用不同的洗脱剂会影响排阻极限。用Bio–Beads S–X 介质分离需要可流动的 洗脱剂,因此,该介质必须在层析柱内使用。洗脱溶剂的芳香性越强,排阻极限越高。介质可与苯、甲苯、二甲苯、 四氯化碳、二甲基甲酰胺、酮、芳香族类、二氯甲烷、o–二氯(代)苯、全氯乙烯、四氢呋喃和三氯(代) 苯等试剂兼容。
与交联度相关的推荐流速:
- 1% 交联度树脂仅用于重力流层析
- 3% 交联度树脂可承受背压20 bar 或300 psi,5 ml/in 的流速
- 8% 和12% 交联度树脂可承受多达33 bar 或500 psi 的背压
100 g, styrene divinylbenzene beads for size limit chromatography, 8% crosslinkage, 40–80 µm bead size, ~1,000 MW limit
Whatman6871-2504GD/X25mm多层针头式过滤器 GD/X 25/0.45 NYL 1500/PK
【简单介绍】
【简单介绍】
【详细说明】
上海金畔生物科技有限公司
文章号19880969-19880969
新型GGT抑制剂
新型GGT抑制剂
GGsTop™
- 产品特性
- 相关资料
- Q&A
- 参考文献
新型GGT抑制剂
GGsTop™
◆原理
GGT(GTP, GPT, -GTP, -GT, –GPT,-谷氨酰转移酶,-谷氨酰转移酶)通过加水分解,使谷胱甘肽(γ-Glu-Cys-Gly)Glu与Cys-Gly之间的-谷氨酰基结合的细胞 膜结合型酶,与谷胱甘肽代谢的关键酶一起对细胞内的谷胱甘肽水平产生影响,对心血管疾病、2型糖尿病(即非胰岛素依赖型糖尿病)、癌细胞对抗癌剂的抗性等 多种疾病都有影响。
本品为新型GGT抑制剂。以前作为GGT抑制剂的阿西维辛(AT-125),除GGT以外,对谷酰胺转移酶(GA家族)也有抑制活性。本品对GA家族没有 抑制活性,是GGT高特异性抑制剂。对人类GGT,显示约100倍阿西维辛的抑制活性。可用于GGT有关的各种病变研究。
◆优点・特色
●GGT特异性高
●对人类GGT的抑制活性高
●毒性低
●化学性质稳定
抑制活性
对来源于人类或大肠杆菌的GGT有抑制活性
|
kon(M-1S-1) |
|
|
人类 |
E.coll |
GGsTopTM |
51 |
170 |
阿西维辛 |
0.40 |
4200 |
kon:酶抑制(失活)的二次反应速度定数
GGsTopTM对于来源于人类的GGT具有约100倍阿西维辛的抑制活性。
对天冬酰胺合成酶的抑制活性
|
抑制浓度 |
GGSTopTM |
〉10mmol/L(具有抑制活性) |
阿西维辛 |
100μmol/L(2小时后,90%以上失活) |
对大肠杆菌天冬酰胺合成酶具有抑制活性,GGsTopTM具有约100倍高浓度阿西维辛的抑制活性,是GGT高特异性抑制剂。
溶解稳定性
中性水溶液及酸性水溶液(例:0.1%TFA溶液,0.1N HCl溶液),以室温保存,可保持一个月以上稳定。
因为稳定性差,请避免溶解于碱性溶液(pH9以上)。
◆使用方法
用蒸馏水溶解本品,制备成10mmol/L备用溶液,分成小份后,以-20℃保存
请避免反复对备用溶液进行冷冻融解操作。
◆保存条件
以-20℃保存
*因为容易吸湿,使用后请立刻用栓塞或封存。如果发现吸湿,使用五氧化二磷等于干燥剂或在干燥器内进行真空干燥亦可。
参考文献
[1]Han,L,Hiratake,J,Kamiyama,A,and Sakata,K,:Biochemisty,46,1432(2007)。
产品编号 | 产品名称 | 产品规格 | 产品等级 | 产品价格 |
075-05471 | GGsTop™ 新型GGT抑制剂 |
细胞生物学用 | – | – |
Immobilon Western 化学发光AP底物WBKDS0025
Immobilon Western 化学发光AP底物WBKDS0025
Immobilon Western 化学发光AP底物是一种浓缩即用型二氧烷衍生物,与其他AP底物相比价格更低但灵敏度更高。该底物的信号强度高、信号持续时间长及低背景使其成为zui通用的AP底物。它是大多数实验室在其所有免疫印迹试验中所需要的*AP试剂。
说明: Immobilon Western AP 底物,25 mL
商标名: Immobilon
数量/包装: 1
应用: Western blotting, dot/slot blotting
膜覆盖度,cm2: 500
保存温度,°C: 2–8
保存条件: 2–8
滤膜孔径,µm: 0.1
体积,mL: 25
产品名称: Immobilon Western 化学发光 AP 底物
过滤面积,cm2: 500
Millicell 站立式插入式细胞培养皿PICM03050
Millicell 站立式插入式细胞培养皿PICM03050
Millicell插入式培养皿适用于24孔、12孔或6孔细胞培养板。插入式培养皿易于采用扫描电镜和透射电镜观察,同时它们又和细胞和/或荧光染色兼容。
说明: Millicell 插入式细胞培养皿, 30 mm, 亲水性 PTFE, 0.4 µm
商标名: Millicell
数量/包装: 50
应用: 低蛋白吸附活细胞检测和免疫荧光应用
滤膜材质: Hydrophilic PTFE
滤膜商标名: Biopore
zui高操作温度,°C: 50
包装: 独立包装
直径,mm: 31.5
滤膜直径,mm: 30
滤膜代码: CM
高度,mm: 13
产品名称: Millicell细胞插入皿
无菌: 无菌
过滤面积,cm2: 4.2
装置材质: 聚苯乙烯
孔数: 1
PFA防静电型热收缩管(称呼:135PB)1800mm日本三博特sanplatec
确认材料的耐药性 >> 耐药性检索
millipore 90mm不锈钢单层过滤器YY3009000
millipore 90mm不锈钢单层过滤器YY3009000
说明: 不锈钢换膜过滤器,90 mm
数量/包装: 1
进口接头: 1/4″ NPTF,带连接,供 9.5 mm 内径软管使用
zui大进口压力,bar (psi): 19 (275)
重量,kg (lb): 2.8 (6.2)
zui大压差,bar (psid): 5 (75)
直径,cm (in): 12.1
高度,cm (in): 17.1 (含进口接头)
出口接头: 1/4″ NPTF,带连接,供 9.5 mm 内径软管使用
结构材质: 316 不锈钢,带阳极化铝制支架
滤膜直径,mm: 90
密封材质: PTFE
产品名称: 换膜过滤器
过滤面积,cm2: 45.5
millipore 90mm不锈钢单层过滤器YY3009000应用:
通过压力过滤对液体或气体进行纯化和过滤。 安装 Durapore 滤膜后进行高温高压灭菌。
90mm 换膜过滤器
替换部件 | |
1 | Hose Connector |
2 | 六角盖头螺丝 |
3 | Valve |
4 | 顶板 |
5 | O-ring |
6 | Support Screen |
7 | Underdrain Support |
8 | 底板 |
9 | Hose Connector |
10 | 支架 |
FEP热收缩管(称呼:NF300)日本三博特sanplatec
确认材料的耐药性 >> 耐药性检索
MilliSolve 过滤系统流动相过滤系统xx1604700
MilliSolve 过滤系统流动相过滤系统xx1604700
在过滤过程中,MilliSolve 过滤系统采用自动、连续过滤溶剂和缓冲液,过滤期间无需手动加液。 2L 的接收瓶包括瓶塞和储存用的导管,避免过滤后溶液的转移,从而降低了工作量和污染风险。 圆锥形底 2L 接收瓶可以储存全部过滤的溶剂/缓冲液。
MilliSolve 过滤系统流动相过滤系统xx1604700优点:
- 在过滤过程中,可进行自动、连续溶剂和转移过滤 – 无需倾倒
- 2L 的接收瓶包括瓶塞和储存用的导管,避免过滤后溶液的转移,从而降低了工作量和污染风险。
- 圆锥形底 2L 接收瓶可以储存全部过滤的溶剂/缓冲液
描述:MilliSolve 过滤系统专为在真空过滤液相色谱 (LC) 缓冲液和溶剂设计的。 该系统使用 0.45 µm 表面滤膜来去除颗粒,这可能会缩短柱的使用寿命。 使用 MilliSolve 系统进行真空过滤还会从缓冲液中去除大部分的溶解气体,从而降低气泡影响 LC 设备的风险。
使用自动和连续过滤,在过滤过程中不必向漏斗中添加液体。 过滤在封闭式系统中进行–这在过滤危险液体时很重要。
如果要求开放式漏斗过滤,则可以使用 300 mL 漏斗替换真空盖。
说明: MilliSolve 过滤系统,包括 2L 的瓶
商标名: MilliSolve
数量/包装: 1
滤膜直径,mm: 47
产品名称: MilliSolve 过滤系统
不锈钢支撑网(使用 XX15 047 32 取代玻璃支撑物,XX15 047 02)具有更高孔隙率,更便于清洗,在真空环境下可改善过滤性能。
Whatman1114-125Grade 114湿强定性滤纸 GR 114 12.5CM 100/PK
【简单介绍】
【简单介绍】
【详细说明】
上海金畔生物科技有限公司
文章号20175201-20175201