抗磷酸化ASK1,单克隆抗体

抗磷酸化ASK1,单克隆抗体
Anti Phosphorylated ASK1, Monoclonal Antibody

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

抗磷酸化ASK1,单克隆抗体抗磷酸化ASK1,单克隆抗体

Anti Phosphorylated ASK1, Monoclonal   Antibody

激活ASK1检测抗体

产品编号

产品名称【中文名称】

规格

包装

017-22351

Anti Phosphorylated ASK1, Monoclonal   Antibody

【抗磷酸化ASK1,单克隆抗体】

免疫化学用

50μg

抗体信息

抗原名

ASK1 pThr838

适用实验

WB

同种型

IgG

WB图像

( – )泳道:对照质粒

TA泳道:过度表达磷酸化抗体识别部位苏氨酸838使Ala丙氨酸变异的人ASK1。

WT泳道:过度表达野生型人ASK1

Stim泳道:过度表达野生型人ASK1,H2O2刺激激活。

抗磷酸化ASK1,单克隆抗体

数据提供:东京大学大学院药学研究科 丸山顺一 野口拓也

抗原信息

第838苏氨酸磷酸化的人ASK 1 835   – 845氨基酸序列肽

物种交叉反应性

人,小鼠

标签

非标签

抗原别名

Apoptosis Signal Regulating Kinase 1
  ※ASK1的别名
  MAP3K5, MEKK5, MAPKKK5

免疫动物

小鼠

克隆号

PA214

详细信息

ASK1是位于MAP激酶通路最上游的细胞内蛋白质磷酸酶。通过应激刺激使活性酶细胞被激活,第838苏氨酸磷酸化而被激活。诱导凋亡和细胞分化。另一方面有报道称,ASK1活化性可诱导阿尔茨海默症和ALS神经细胞凋亡。

本产品是识别第838苏氨酸磷酸化ASK 1的单克隆抗体。

使用文献

1. Ichijo, H., Nishida, E., Irie, K., et   al.: SCIENCE, 275, 90 (1997).

 

相关资料


抗磷酸化ASK1,单克隆抗体

抗磷酸化ASK1,单克隆抗体017-22351英文说明书.pdf

(欲了解内容请点击图片)

产品编号 产品名称 产品规格 产品等级 产品价格
017-22351 Anti Phosphorylated ASK1, Monoclonal   Antibody 
抗磷酸化ASK1,单克隆抗体
​50μg 免疫化学用

Whatman10441004玻璃真空过滤装置GV025/0/05 CENTRING F/FR 1/PK

【简单介绍】

Whatman为客户提供多种多样的特殊实验产品,以满足实验者的不同实验需求。秉承Whatman传统的质量,这些产品集合了易于操作、精确度高、一致性好等优点。

【简单介绍】

Whatman为客户提供多种多样的特殊实验产品,以满足实验者的不同实验需求。秉承Whatman传统的质量,这些产品集合了易于操作、精确度高、一致性好等优点。

【详细说明】

原装进口英国Whatman10441004玻璃真空过滤装置GV025/0/05 CENTRING F/FR 1/PK

英国Whatman10441004玻璃真空过滤装置GV025/0/05 CENTRING F/FR 1/PK

产品介绍:

玻璃真空过滤装置

特点和优点

l 对大多数水溶剂和有机溶剂化学耐受

l 对酸和腐蚀溶液耐受

l 可高压灭菌,并可在干热180℃下消毒

l 最高可在200℃下使用

应用

l 食品(如冰激淋)

l 饮料(如啤酒中的残渣)

l 药品和化妆品

l 水及废水

l 残渣和沉淀分析

l 污染物检测(如电镀术)

l 微生物学,生物化学和水生生物学探测

l 放射化学检测

l 在高灵敏度领域如电子业、航空业和航天业进行粒子检测

英国Whatman10441004玻璃真空过滤装置GV025/0/05 CENTRING F/FR 1/PK

CATALOG NO货号

DESCRIPTION描述

10440001 MV050/0/01 SS FUN 500ML 1/PK
10440003 MV050/0/03 SCRN F/MV050 1/PK
10440004 GV/MV050/0/06 CLAMP 1/PK
10440006 MV050/0/09 ORING FOR LID 1/PK
10440102 MV050/1/05 PTFE GASKET 1/PK
10441001 GV025/0/01 GLASS FUN 60ML 1/PK
10441003 GV025/0/03 GLASSFRIT 1/PK
10441004 GV025/0/05 CENTRING F/FRT 1/PK
10441005 GV025/0/06 CLAMP F/GV025 1/PK
10441201 GV025/2/02 BASE F/GV025/2 1/PK
10441203 GV025/2/08 FLSK F/GV025/2 1/PK
10442001 GV050/0/01 FUN F/GV050 1/PK
10442002 GV050/0/02 BASE F/GV050/0 1/PK
10442003 GV050/0/03 FRIT F/GV050 1/PK
10442004 GV050/0/05 CENRNG F/GV050 1/PK
10442006 GV050/0/12 RUBCAP F/GV050 1/PK
10442101 GV050/1/03 SCRN F/GV050/1 1/PK
10442201 GV050/2/02 BASE W/NS29 1/PK
10442203 GV050/2/08 FLASK 1L NS29 1/PK
10442212 GV050/2/12 BASE W/NS45 1/PK
10442213 GV050/2/13 FLASK 1L NS45 1/PK
10443001 GV100/0/01 FUNNEL F/GV100 1/PK
10443002 GV100/0/02 BASE F/GV100 1/PK
10443003 GV100/0/03 FRIT F/GV100/0 1/PK
10443004 GV100/0/05 CENTRING F/FRT 1/PK
10443005 GV100/0/06 CLAMP F/GV100 1/PK
10443101 GV100/1/03 SCRN F/GV100/1 1/PK
10443102 GV100/1/05 CENTRING F/SCR 1/PK
10444810 AS600/1 GLASS VAC6 250ML 1/PK
10445708 AS003/0/05 SUCTIONCAP 1/PK
10445900 MBS2 100ML PP-FUNNEL NC 0.45UM
10445901 MBS2 100ML PP-FUNNEL NC 0.45UM
10445903 MBS2 100ML PP-FUNNEL ME 0.2UM
10446002 GV050/0/10 RUBSTP F/SF100 1/PK
10446004 GV100/0/10 RUBSTP F/SF100 1/PK
10450000 MD050/0 SS PR 50MM 100ML 1/PK
10450003 MD050/0/03 SCRN F/MD050 1/PK
10450004 MD050/0/04 SIEVE F/MD050 1/PK
10450009 MD050/0/31 SIRING F/MD050 1/PK
10452003 MD142/2/03 SCRN F/MD142 1/PK
10452004 MD142/2/04 SIEVE F/MD142 1/PK
10452005 MD142/2/05 BACKPR F/MD142 1/PK
10452006 MD142/2/66 ORING F/MD142 1/PK
10453301 ST002 STAND F/MD050 1/PK
10460100 FM025/0 SS FILTHOLD 25MM 1/PK
10461000 FP025/1 PSU FILHOLD 25MM 10/PK
10461100 FP050/0 PSU FILTHOLD 50MM 1/PK
10461118 FP050/0/13 CONNHOSE FP050 1/PK
10461200 FP050/0 PSU FILTHOLD 50MM 5/PK
10461300 FP050/1 PSU FILTHOLD 50MM 1/PK
10461400 FP050/1 PSU FILTHOLD 50MM 5/PK
10464100 ML050/0 SS FILTHOLD 50MM 1/PK
1980-1004 MEMBRANE FORCEPS 1/PK

上海金畔生物科技有限公司

文章号19846787-19846787

PTFE球 3/32in 直径(Φmm):2.4日本三博特sanplatec

PTFE球 3/32in 直径(Φmm):2.4
产品编号: 15177 价格: 会员价:0元;市场价:0元 产品特点
/
产品规格

PTFE球 3/32in 直径(Φmm):2.4

数量(个):10

材料

确认材料的耐药性 >> 耐药性检索

        PTFE球 3/32in 直径(Φmm):2.4PTFE球 3/32in 直径(Φmm):2.4产品特征: ※in : 英寸
※称呼表示经度。
●特点
・控制蒸馏筒内或理科试验中的药液的突然沸腾。 

美国wheaton356834微载体悬浮培养瓶356834-赛默飞中国代理商

产品信息
产品名称:
美国wheaton356834微载体悬浮培养瓶
产品型号:
356834
美国wheaton356834微载体悬浮培养瓶356834 产品特点
  带有可弯曲的球形搅拌轮,可提高搅拌效率,又能提供轻柔均一悬浮力。瓶底的“酒窝”设计,可防止细胞在叶轮下方受压。具有较大的内部气体交换表面,同时上部空间比在1:1以 上。整套培养瓶可高压灭菌。容量1000ml;瓶盖规格100-400mm;侧出口规格45mm;直径×高度:130×250mm

美国wheaton356834微载体悬浮培养瓶356834
产品详细信息:

带有可弯曲的球形搅拌轮,可提高搅拌效率,又能提供轻柔均一悬浮力。瓶底的酒窝设计,可防止细胞在叶轮下方受压。具有较大的内部气体交换表面,同时上部空间比在1:1  上。整套培养瓶可高压灭菌。容量1000ml;瓶盖规格100-400mm;侧出口规格45mm;直径×高度:130×250mm

Fisher Scientific Traceable -100.0 欧铂金冰柜温度计15-077-961-赛默飞中国代理商

产品信息
产品名称:
Fisher Scientific Traceable -100.0 欧铂金冰柜温度计
产品型号:
15-077-961
Fisher Scientific Traceable -100.0 欧铂金冰柜温度计15-077-961 产品特点
  产品特色 ● 这种电阻式(RTD)铂金冰柜温度计能够 精确监控冰柜、水浴槽、加热组合单元、孵 化器和冰箱中的温度。它的量程是 -99.9 到 199.9℃,分辨率 0.1°,精度 ±2℃。 它配有 3 米长的超薄微缆,冰柜门可以在上 面关闭,而不会影响密封。它采用快速响应 的 -100.0 欧三用铂金探针,可以用来探测 液体、空气 / 气体和冷冻物质的温度。 ● 为了确保精度,这款温度计由 A

Fisher Scientific Traceable -100.0 欧铂金冰柜温度计15-077-961
产品详细信息:

Fisher Scientific Traceable -100.0 欧铂金冰柜温度计

产品特色

这种电阻式(RTD)铂金冰柜温度计能够 精确监控冰柜、水浴槽、加热组合单元、孵 化器和冰箱中的温度。它的量程是 -99.9 199.9℃,分辨率 0.1°,精度 ±2℃。 它配有 3 米长的超薄微缆,冰柜门可以在上 面关闭,而不会影响密封。它采用快速响应 -100.0 欧三用铂金探针,可以用来探测 液体、空气 / 气体和冷冻物质的温度。

为了确保精度,这款温度计由 A2LAA2LA CNAL 的校准证 书是互相承认的)认可的 ISO 17025 校准实验室颁发了单独编号 Traceable 证书。这份证书表明,此项产品符合美国国家标准 技术研究院(NIST)颁布的标准。

Fisher Scientific Traceable -100.0 欧铂金冰柜温度计15-077-961 证书上显示了 -80℃、0℃和 100℃的校准测试点。产品配有可调 节探针夹座、VelcroTM,并配有温度计与探针安装的磁片。此外, 供货时还配有 Traceable 证书、提箱及 9 伏的电池。电阻式铂金 探针的尺寸为:探针长度76毫米,直径4毫米;针杆全长175毫米, 电缆长度 3 米。装置采用耐受强冲击和化学品的 ABS 外壳,尺寸 70×108×19 毫米。装置重量 120 克。

订货号

描述

FIS15-077-961

Traceable  -99.9 199.9℃欧铂金冰柜温度计

 

fisher防脱载玻片 预清洁 superfrost生物显微镜玻片 75x25mm 浅紫色 12-550-16-赛默飞中国代理商

产品信息
产品名称:
fisher防脱载玻片 预清洁 superfrost生物显微镜玻片 75x25mm 浅紫色 12-550-16
产品型号:
fisher防脱载玻片 预清洁 superfrost生物显微镜玻片 75x25mm 浅紫色 12-550-16 产品特点
  美国fisher载玻片冰冻切片、血细胞分离和巴氏涂片等操作的理想选择● 特殊表面处理,以便组织、细胞能通过静电吸附于玻片,无需另外粘附或包被蛋白,节约操作时间● 加强了吸附力,能有效减少染色过程中的组织块损失● Superfrost Plus 载玻片一端有抗化学腐蚀的白色涂层,ColorFrost Plus 载玻片一端带彩色涂层,方便识别● 适用于组织学、细胞学、微生物学,如冰冻组织切

fisher防脱载玻片 预清洁 superfrost生物显微镜玻片 75x25mm 浅紫色 12-550-16
产品详细信息:

美国fisher防脱载玻片

冰冻切片、血细胞分离和巴氏涂片等操作的理想选择
● 特殊表面处理,以便组织、细胞能通过静电吸附于玻片,无需另外粘附或包被蛋白,节约操作时间
● 加强了吸附力,能有效减少染色过程中的组织块损失
● Superfrost Plus 载玻片一端有抗化学腐蚀的白色涂层,ColorFrost Plus 载玻片一端带彩色涂层,方便识别
● 适用于组织学、细胞学、微生物学,如冰冻组织切片等
● 长× 宽 75×25 mm,有 10 种颜色供选择
fisher防脱载玻片 预清洁 superfrost生物显微镜玻片 75x25mm 浅紫色 12-550-16

Whatman10410380再生纤维素膜 RC58 0.2um 300x600MM 5/PK

【简单介绍】

Whatman为客户提供多种多样的特殊实验产品,以满足实验者的不同实验需求。秉承Whatman传统的质量,这些产品集合了易于操作、精确度高、一致性好等优点。

【简单介绍】

Whatman为客户提供多种多样的特殊实验产品,以满足实验者的不同实验需求。秉承Whatman传统的质量,这些产品集合了易于操作、精确度高、一致性好等优点。

【详细说明】

原装进口英国Whatman10410380再生纤维素膜 RC58 0.2um 300x600MM 5/PK

英国Whatman10410380再生纤维素膜 RC58 0.2um 300x600MM 5/PK

产品介绍:

Regenerated Callulose Membranes 再生纤维素膜

Whatman再生纤维素膜由纯纤维制造而成,没有任何润湿剂;

性质和优点:

??具有自然的湿润性能,很好的湿强度

??极好的化学抗性;适合于水和有机介质

??亲水性

??机械稳定

??可耐高温达180

??可用任何方法消毒

??孔径范围是0.2µm-1.0µm之间

??适合于ASTMD3862-80无菌滤纸

技术参数- 再生纤维素膜

厚度

µm

水流速

Δp=0.9mbar

(mL/min/cm2 )

空气流速

Δp=3mbar

(mL/min/cm2 )

起泡点

bar

RC 58

75

20

3.7

RC 55

75

35

3.5

RC 60

75

240

75

0.8

订货信息再生纤维素膜

尺寸(mm

孔径(µm

货号

无菌

数量/

RC 58

47

0.2

10410312

100

50

0.2

10410314

100

100

0.2

10410319

25

RC 55

25

0.45

10410206

100

47

0.45

10410212

100

50

0.45

10410214

100

100

0.45

10410219

25

110

0.45

10410224

25

142

0.45

10410229

25

RC 60

47

1.0

10410012

100

50

1.0

10410014

100

上海金畔生物科技有限公司

文章号19721678-19721678

美国wheatonW225160色谱样品瓶W225160-赛默飞中国代理商

产品信息
产品名称:
美国wheatonW225160色谱样品瓶
产品型号:
W225160
美国wheatonW225160色谱样品瓶W225160 产品特点
  由符合ASTM TYPE Ⅰ 标准的硼硅酸盐玻璃制造,容量为1.8ml,宽瓶的设计,加样更容易。适用于绝大部分的自动进样器。瓶盖为单层PTFE膜胶垫顶开口11mm铝盖。1000个/箱。透明,带蓝色盖

美国wheatonW225160色谱样品瓶W225160
产品详细信息:

由符合ASTM TYPE 标准的硼硅酸盐玻璃制造,容量为1.8ml,宽瓶的设计,加样更容易。适用于绝大部分的自动进样器。瓶盖为单层PTFE膜胶垫顶开口11mm铝盖。1000/箱。透明,带蓝色盖

 

订货号

描述

包装

225175

无色样品瓶

1000/

225174

无色;有标签瓶

1000/

225173

棕色;有标签瓶

1000/

225172

棕色样品瓶

1000/

22517902

棕色样品瓶

1000/

W225167

棕色;有标签瓶

1000/

W225160

透明,带蓝色盖

1000/

W225165

透明,带铝盖

1000/

W225162

棕色,带蓝色盖

1000/

W225164

透明,带铝盖

1000/

W225163

棕色,带蓝色盖

1000/

W225166

棕色,带铝盖

1000/

Thermo ScientificTM PrecisionTM 通用水浴2824-赛默飞中国代理商

产品信息
产品名称:
Thermo ScientificTM PrecisionTM 通用水浴
产品型号:
2824
Thermo ScientificTM PrecisionTM 通用水浴2824 产品特点
  Thermo ScientificTM PrecisionTM 通用水浴 产品特色 ● 无缝不锈钢内墙、便于清洁 ● 外部覆盖环氧涂层,防腐蚀 ● 标配不锈钢散流架 ● 除 181 和 182 型外,均含不锈钢山形盖 ● 181 和 182 型含聚丙烯山形盖 ● 模拟控制、数字控制可选 ● 8 种尺寸可选,Z低 1.5 L,Z大 43 L ● 过温保护 ● ML 认证(120

Thermo ScientificTM PrecisionTM 通用水浴2824
产品详细信息:

Thermo ScientificTM PrecisionTM 通用水浴2824 Thermo ScientificTM PrecisionTM 通用水浴

 

产品特色

无缝不锈钢内墙、便于清洁

外部覆盖环氧涂层,防腐蚀

标配不锈钢散流架

181 182 型外,均含不锈钢山形盖

181 182 型含聚丙烯山形盖

模拟控制、数字控制可选

8 种尺寸可选,zui低 1.5 L,zui大 43 L

过温保护

ML 认证(120 V

数字控制型订货信息:

订货号

2826

2830

2834

2838

2842

2846

2850

2854

型号

280

281

282

283

284

285

286

288

容积

1.5 L

2.5 L

5.5 L

12 L

19.5 L

18 L

43 L

12 L

温度范围

0-100

0-100

0-100

0-100

0-100

0-100

0-100

0-100

内尺寸cm

15x29x5

15x13x16

29x15x15

29x32x15

36x31x20

50x29x15

41x71x17

29x32x15

外尺寸cm

20x36x17

25x20x25

39x20x25

39x38x25

48x40x25

58x35x25

53x80x25

39x74x25

灵敏度℃

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

模拟控制型订货信息:

订货号

2824

2828

2832

2836

2840

2844

2848

2852

型号

180

181

182

183

184

185

186

188

容积

1.5 L

2.5 L

5.5 L

12 L

19.5 L

18 L

43 L

12L

温度范围

0-100

0-100

0-100

0-100

0-100

0-100

0-100

0-100

内尺寸cm

15x29x5

15x13x16

29x15x15

29x32x15

36x31x20

50x29x15

41x71x17

29x32x15

外尺寸cm

22x36x17

27x20x25

41x20x25

41x38x25

50x40x25

61x35x25

55x80x25

41x74x25

灵敏度℃

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Thermo285通用水浴2846285-赛默飞中国代理商

产品信息
产品名称:
Thermo285通用水浴2846
产品型号:
285
Thermo285通用水浴2846285 产品特点
  产品特色 ● 无缝不锈钢内墙、便于清洁 ● 外部覆盖环氧涂层,防腐蚀 ● 标配不锈钢散流架 ● 除 181 和 182 型外,均含不锈钢山形盖 ● 181 和 182 型含聚丙烯山形盖 ● 模拟控制、数字控制可选 ● 8 种尺寸可选,Z低 1.5 L,Z大 43 L ● 过温保护 ● ML 认证(120 V)

Thermo285通用水浴2846285
产品详细信息:

产品特色 

● 无缝不锈钢内墙、便于清洁 

● 外部覆盖环氧涂层,防腐蚀 

● 标配不锈钢散流架 

● 除 181 和 182 型外,均含不锈钢山形盖 

● 181 和 182 型含聚丙烯山形盖 

● 模拟控制、数字控制可选 

● 8 种尺寸可选,zui低 1.5 L,zui大 43 L 

● 过温保护 

● ML 认证(120 V)

纯丝胶(蚕源蛋白)

纯丝胶(蚕源蛋白)
Pure Sericin

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

纯丝胶(蚕源蛋白)纯丝胶(蚕源蛋白)

Pure Sericin

纯丝胶(蚕源蛋白)

  本产品是Seiren株式会社制造的蚕茧源蛋白。


  有报道指出在培养基中添加0.1%(w/v)本产品有促进细胞生长和抑制细胞死亡的作用[1][2]。另有报道称将1%(w/v)本产品与DMSO共同添加到基础培养基,可作为无血清冻存液使用[3]。适用于无血清培养基的研究。




◆案例•应用


杂交瘤细胞制备单克隆抗体的应用实例


纯丝胶(蚕源蛋白)

  基础培养基选择日本制药株式会社的DaigoDaigoT培养基。


  1、只有DaigoT培养基,2、含0.1% Sericin的DaigoT培养基,3、 加入10%FBS的DaigoT培养基 以上3个条件进行比较。
  

  结果显示,相比只有DaigoT培养基,含0.1% Sericin的DaigoT培养的活细胞密度和生存率有所改善(图1,

图2)。抗体产量与加入10%FBS培养基相同(图3)。  


  (数据提供:福井大学 工学研究科 助教 寺田 聡先生)



-80℃冻存/复苏人肝癌细胞株HepG2的研究案例

纯丝胶(蚕源蛋白)


  在以下冻存液样品中添加2×105cells的HepG2细胞,悬浮后,在-80℃的冷冻库冻存3天。然后复苏,培养3天,测定其间的活细胞数。


  1、普通冻结液(90%FBS+10%DMSO)

  2、Sericin液(PBS加入氨基酸等+1% Sericin+10%DMSO)


  (数据提供:福井大学 工学研究科 助教 寺田 聡先生)



促进各种细胞的生长 

纯丝胶(蚕源蛋白)


纯丝胶(蚕源蛋白)
纯丝胶(蚕源蛋白)


液体培养基


纯丝胶(蚕源蛋白)


  上图为细胞培养用的液体培养基和平衡盐溶液。增加了广受好评的D-MEM和RPMI-1640,新增第三种产品E-MEM等。适用于各种细胞培养。

产品名称

产品编号

等级

规格

价格

液体培养基

L-谷氨酰胺

酚红

丙酮酸

D-MEM

 (High Glucose)

+

+

044-29765

细胞培养用

500ml

 询价

+

+

+

043-30085

细胞培养用

500ml

 询价

040-30095

细胞培养用

500ml

 询价

D-MEM

 (Low Glucose)

+

+

+

041-29775

细胞培养用

500ml

 询价

E-MEM

+

+

051-07615

细胞培养用

500ml

 询价

MEMα

+

+

+

135-15175

细胞培养用

500ml

 询价

RPMI-1640

+

+

189-02025

细胞培养用

500ml

 询价

Ham’s F-12

+

+

+

087-08335

细胞培养用

500ml

 询价

Ham’s F-12

+

+

+

048-29785

细胞培养用

500ml

 询价

平衡盐溶液

HBSS(-) with Phenol Red

084-08345

细胞培养用

500ml

 询价

D-PBS(-)

045-29795

细胞培养用

500ml

 询价

10×D-PBS(-)

048-29805

细胞培养用

500ml

 询价




[1]Terada, S., Nishimura, T., Sasaki, M., Yamada, H. and Miki, M.: Cytotechnology , 40, 3 (2002)

[2]Terada, S., Sasaki, M., Yanagihara, K. and Yamada. H.: J. Bioscience and Bioengineering , 100, 667(2005)

[3]Sasaki, M., Kato, S., Yamada, H. and Terada, S.: Biotechnol. Appl. Biochem , 42, 183(2005)

产品编号 产品名称 产品规格 产品等级 产品价格
167-22681 Pure Sericin™ 1g 细胞培养用
163-22683 Pure Sericin™ 5g 细胞培养用

PFA平底容器0110(容量:300ml)日本三博特sanplatec

PFA平底容器0110(容量:300ml)
产品编号: WEB15286 价格: 会员价:0元;市场价:0元 产品特点
使用温度范围:-196~200℃
产品规格

整体尺寸(mm)(外径×内径×高):86×  80×  83

瓶盖尺寸(mm)(外径×高):95×  88

材料

确认材料的耐药性 >> 耐药性检索

        PFA平底容器0110(容量:300ml)PFA平底容器0110(容量:300ml)产品特征

特点:使用注射成型工艺,材质坚固,内底部平整,PFA 制,有优异耐药性,几乎不溶出金属离子,耐热性、耐寒性优异,可放入冰箱冷藏及放到油浴里加热, 使用温度范围广,(-196℃~200℃)。(底部平整,传热率优良。) ・同时具有不粘性,无须担心样品粘附。

作用:小瓶是无金属容量瓶,适合水质检查、ICP 分析等实验。 中瓶适合作为反应和保存药液的容器,大瓶适合作为反应用或保存强酸、有机溶剂等废弃液的容器。

注意:15280 ~ 15292 的瓶盖形状与照片不同。

 

美国wheaton225172色谱样品瓶225172-赛默飞中国代理商

产品信息
产品名称:
美国wheaton225172色谱样品瓶
产品型号:
225172
美国wheaton225172色谱样品瓶225172 产品特点
  由符合ASTM TYPE Ⅰ 标准的硼硅酸盐玻璃制造,容量为1.8ml,宽瓶的设计,加样更容易。适用于绝大部分的自动进样器。瓶盖为单层PTFE膜胶垫顶开口11mm铝盖。1000个/箱。棕色样品瓶

美国wheaton225172色谱样品瓶225172
产品详细信息:

由符合ASTM TYPE 标准的硼硅酸盐玻璃制造,容量为1.8ml,宽瓶的设计,加样更容易。适用于绝大部分的自动进样器。瓶盖为单层PTFE膜胶垫顶开口11mm铝盖。1000/箱。棕色样品瓶

订货号

描述

包装

225175

无色样品瓶

1000/

225174

无色;有标签瓶

1000/

225173

棕色;有标签瓶

1000/

225172

棕色样品瓶

1000/

22517902

棕色样品瓶

1000/

W225167

棕色;有标签瓶

1000/

W225160

透明,带蓝色盖

1000/

W225165

透明,带铝盖

1000/

W225162

棕色,带蓝色盖

1000/

W225164

透明,带铝盖

1000/

W225163

棕色,带蓝色盖

1000/

W225166

棕色,带铝盖

1000/

美国Wheaton348522玻璃滚动细胞培养瓶348522-赛默飞中国代理商

产品信息
产品名称:
美国Wheaton348522玻璃滚动细胞培养瓶
产品型号:
348522
美国Wheaton348522玻璃滚动细胞培养瓶348522 产品特点
  大瓶口操作更加方便,51-400瓶盖带有密封垫,由Wheaton 33低溶出硼硅酸盐玻玻璃制作(符合ASTM Type I Class A和USP Type I标准)。

美国Wheaton348522玻璃滚动细胞培养瓶348522
产品详细信息:

大瓶口操作更加方便,51-400瓶盖带有密封垫,由Wheaton 33低溶出硼硅酸盐玻玻璃制作(符合ASTM Type I Class AUSP Type I标准)。

重组无细胞蛋白合成系统

重组无细胞蛋白合成系统
PUREfrex® 2.0

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

重组合无细胞蛋白合成系统重组无细胞蛋白合成系统

PUREfrex® 2.0

 



◆简介


  PUREfrex® 试剂盒是在东京大学的Takuya Ueda教授所发明的PUREsystem技术基础上,新开发的一款重组合无细胞蛋白合成试剂盒。

  反应系统由蛋白质、核糖体、氨基酸和NTPs组成[1,2],其中蛋白行使转录、翻译和能量供应的功能。蛋白与核糖体为分别单独高度纯化后,再重新组合成蛋白合成系统,而非直接从大肠杆菌S30中提取。当合成蛋白时,仅需将编码目的蛋白的模板DNA或mRNA添加到反应混合液中并孵育数小时,即可完成反应。本系统最大的特色,是在体外以转录相关因子重新组合一套表达系统,并可根据需要来调整反应混合物的成分,而不必担心高背景会影响下游的应用。进行蛋白表达仅需将编码目标蛋白的模板DNA或mRNA加入到反应体系中,然后孵育2-4小时即可完成反应。PUREfrex® 试剂盒的所有蛋白组分均不带标签,因此目的蛋白可融合任意标签进行纯化和检测。

重组无细胞蛋白合成系统

 


>>>无细胞表达的优势<<<


● 无需制备克隆

● 无需考虑培养条件

● 无需考虑表达所需的诱导条件

● 来源于宿主的污染少

 



◆PUREfrex® 系列


● PUREfrex® 1.0 第一代产品    

● PUREfrex® 2.0 第二代产品,表达量更高,污染水平更低;

● RNA酶与β-半乳糖苷酶污染大大降低;

● 每1 µL反应混合物中的脂多糖(LPS)低于0.1 EU。

● PUREfrex® 2.1 更适合二硫键的形成



☆升级至PUREfrex® 2.0


1.合成原核和真核蛋白的结果显示,用PUREfrex® 2.0合成时,各种蛋白的合成量增加。

重组无细胞蛋白合成系统

2.GFP蛋白合成的结果显示,用PUREfrex® 2.0合成时,可以观察到荧光强度增强了

2.10倍以上(每单位反应产物)。

重组无细胞蛋白合成系统

3.合成需要形成二硫键(SS键)的大肠杆菌酸性磷酸酶(AppA1)时,在PUREfrex® 2.0基础上,

3.添加了DS supplement的结果显示,存在氧化剂和二硫键异构酶时,活性蛋白合成量增加。

重组无细胞蛋白合成系统

1:AppA有5个二硫键,是其中一个位点在不连续的半胱氨酸之间存在的二硫键。



4.正确高级结构蛋白的合成结果显示,存在分子伴侣2的情况下用PUREfrex® 2.0,蛋白合成量增加。

重组无细胞蛋白合成系统

2 DnaK Mix:DnaK / DnaJ / GrpE mixture为配套分子伴侣

 



◆特点


● 可以同时加入多种模板进行反应,以合成Fab(带二硫键)及多聚体等带二级结构的多肽

● 可合成活细胞难以合成的强毒性蛋白

● 可直接使用PCR产物来作为模板DNA

● 单位体积内合成的蛋白量几乎恒定,不随反应体积变化而产生显著差异

● 操作简便,仅需在37℃孵育数小时

● 可以合成带标签的蛋白用于下游纯化和检测

● 产品经优化升级,合成量大大提高

 



◆应用


制备目的蛋白


● 原核蛋白

● 真核蛋白

● 膜蛋白

● 二硫键蛋白

● 含有非天然氨基酸的蛋白质等

 


蛋白基础研究


● 翻译

● 蛋白合成后折叠

 


体外展示技术


● 核糖体展示技术

● mRNA展示技术

 



◆应用实例


利用PUREfrex® 系统合成并一步纯化DHFR-His

重组无细胞蛋白合成系统

3:模板DNA的构建方法请见"相关资料"栏或点击这里




◆添加剂(用于需要形成二硫键和分子伴侣的蛋白质)


● DS supplement

● 通过添加DS supplement至PUREfrex® 反应液中,为二硫键形成创造最佳的环境。DS supplement作为创造氧化环境的氧化剂,含有氧化型谷胱甘肽(GSSG)和作为二硫键异构酶的大肠杆菌DsbC。当蛋白需要二硫键才能产生活性形式时,请使用本添加剂。

 

● DnaK Mix

● DnaK Mix是高度纯化后的大肠杆菌来源的DnaK、DnaJ、GrpE蛋白以适当的浓度比例预混后的溶液。在PUREfrex® 反应体系中单独或添加DS supplement合成蛋白时同时添加DnaK Mix,可以更易获得难以独自形成高级结构的活性蛋白。

 

● GroE Mix

● GroE Mix是高度纯化后的大肠杆菌来源的GroEL、GroES蛋白以适当的浓度比例预混后的溶液。以PUREfrex® 反应体系合成蛋白时添加GroE Mix,可以更易获得难以独自形成高级结构的活性蛋白。

 



◆试剂盒组成


用于250 μL反应

使用前请将试剂盒置于-80°C保存

试剂 体积 成分说明 保存温度
溶液 I (白盖 125 μL 氨基酸,核苷酸,tRNA和酶的底物等 -20°C
溶液 II (黑盖 12.5 μL 蛋白,保存于含30%甘油的缓冲液 -20°C or -80°C(1)
溶液 III (红盖 12.5 μL ×2 核糖体(20 μM) -80°C(1)

DHFR   DNA (透明盖)(2)

10 μL 对照DNA,含有编码大肠杆菌DHFR基因的PCR产物(20 ng/μL) -20°C

(1)剩余的溶液应快速在液氮、干冰或乙醇中冻结,并储存于-80℃。如有必要,分装剩余溶液,并尽可能避免反复冻融。

(2)每50 μL反应中加入2.5 μL DHFR DNA。

 

◆产品列表


产品编号

产品名称

规格

备注信息

GFK-PF201-0.25-EX

PUREfrex® 2.0

1 kit

供250 μL反应使用

GFK-PF201-0.25-5-EX

PUREfrex® 2.0

1 kit

供250 μL×5次反应使用

GFK-PF213-0.25-EX

PUREfrex® 2.1

1 kit

供250 μL反应使用

GFK-PF213-0.25-5-EX

PUREfrex® 2.1

1 kit

供250 μL×5次反应使用

GFK-PF003-0.5-EX

DnaK Mix

1 kit

供500 μL反应使用

GFK-PF004-0.5-EX

GroE Mix

1 kit

供500 μL反应使用

GFK-PF005-0.5-EX

DS supplement

1 kit

供500 μL反应使用

 

相关产品的详细信息请点击查看:重组无细胞蛋白合成系统 PUREfrex® 2.0

相关资料

重组无细胞蛋白合成系统 重组无细胞蛋白合成系统

PUREfrex™ Technical information

PUREfrex™ Protocol

蛋白质工程相关产品

PUREfrex:重组无细胞蛋白合成试剂盒

RYTS试剂盒:大肠杆菌无细胞蛋白质合成系统

CloverDirect:定点蛋白质功能化tRNA试剂

纯化系统:一步高纯度标记纯化系统

STELLA +“赖氨酸标记试剂盒”

  • PUREfrex : Reconstituted Cell-free Protein Synthesis Kit

  • RYTS Kit : E. coli Cell-free Protein Synthesis System

  • CloverDirect : tRNA Reagents for Site-Directed Protein Functionalization

  • Dock Purification System : One step high purity purification tag purification system

  • STELLA+ " Lysine Labeling Kit "

PUREfrex Q&A

Q: 使用PUREfrex™ 试剂盒是否可用于真核蛋白的合成?

: PUREfrex™ 是由E.coli的核糖体和翻译因子组成的体外重组蛋白合成试剂盒,但也可以合成哺乳动物和植物的蛋白。目标蛋白的合成效率取决于编码蛋白的核苷酸序列,比如GC含量,稀有密码子的含量。

 

Q: 使用PUREfrex™ 试剂盒可以合成多少蛋白?

: 这个取决于目标蛋白。来自E.coli的二氢叶酸还原酶每毫升反应液可合成150ug。

 

Q: 是否可以合成大于100kDa的蛋白?

A: 我们用该试剂盒合成了116kDa的蛋白。

 

Q: 是否可以推荐PUREfrex™ 的反应条件?

A: 推荐用该试剂盒在37℃反应2~4小时。

 

Q: 是否可以合成和纯化标签蛋白?

A: 可以使用任何标签,PUREfrex™ 试剂盒的所有蛋白成分都没有用于纯化或者检测的标签。比如,合成后可用金属螯合的树脂纯化带有His标签的目标蛋白。

 

Q: 合成蛋白是否经糖基化或者磷酸化修饰?

A: 不。不会发生翻译后修饰,PUREfrex™ 试剂盒只是由翻译因子组成。

 

Q: PUREfrex™ 试剂盒是否含有分子伴侣?

A: 不。PUREfrex™ 试剂盒不含有任何分子伴侣,但你可以添加分子伴侣,比如Hsp70。你可以自己制备。

 

Q: 用PUREfrex™ 试剂盒是否可合成含有二硫键的蛋白?

A: 不行。目标蛋白合成不带有二硫键,因为翻译反应时有还原剂DTT。大多数需要二硫键才有活性的蛋白,会没有活性。

 

Q: PUREfrex™ 是否可合成膜蛋白?

A: 一般情况,合成膜蛋白会形成聚集。为了获得能够插入到脂双层的膜蛋白,需要在合成膜蛋白时添加脂质体到PUREfrex™。

 

Q: 是否可合成带有[35S] 甲硫氨酸或者 [3H] 亮氨酸的蛋白?

A: 添加放射性元素标记的氨基酸可以合成放射性元素标记的蛋白,比如[35S] 甲硫氨酸或者 [3H] 亮氨酸。PUREfrex™ 含有20种天然的氨基酸,浓度都在0.5mM。请优化条件。

 

Q: 除了T7启动子外,是否可用其他启动子?

A: 我们推荐使用T7启动子的模板DNA,因为PUREfrex™ 含有转录的RNA聚合酶。当你使用其他聚合酶,制备的模板DNA要有相应聚合酶的合适启动子。

 

Q: 使用DHFR DNA(阳性对照)无法获得DHFR。

A: 该试剂盒由于某些原因失活。为了避免失活,请将该试剂盒存放在适当稳定。可进行分装,避免反复冻融影响试剂盒的使用效果。或者改试剂盒被核酸酶污染了。请使用不含核酸酶的水,试剂和材料。

 

Q: 使用试剂盒的DHFR可以得到DHFR。但是不能得到目标蛋白,或者目标蛋白量很低。

A: 1)改试剂盒由于某些原因失活了。为了避免失活,请将该试剂盒存放在适当的温度并且进行分装(避免反复冻融)

A: 2)可以受核酸酶污染。为了避免核酸酶污染,请使用不含核酸酶的水,试剂和材料。

A: 3)制备的DNA模板不准确。需要制备含有T7启动子,核糖体结合位点,起始密码子,终止密码子的DNA模板。

A: 4)转录的二级结构会阻止翻译反应。这种情况,请优化模板的顺序,解决二级结构的问题。

[1] Murakami, S., Matsumoto, R., & Kanamori, T.. (2019). Constructive approach for synthesis of a functional IgG using a reconstituted cell-free protein synthesis system. Scientific reports 9(1), 671. 
[2] Doerr, A., de Reus, E., van Nies, P., van der Haar, M., Wei, K., Kattan, J., et al. (2019). Modelling cell-free RNA and protein synthesis with minimal systems. Physical biology, 16, 025001. 
[3] Dopp, J., Tamiev, D., & Reuel, N. F.. (2019). Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnology advances, 37(1),   246-258. 
[4] Marsden, A. P., Hollins, J. J., O’Neill, C., Ryzhov, P., Higson, S., Mendonça, C. A., et al. (2018).   Investigating the Effect of Chain Connectivity on the Folding of a Beta-Sheet   Protein On and Off the Ribosome. Journal of molecular biology, 430, 5207-5216.
[5] Tian, P., Steward, A., Kudva, R., Su, T., Shilling, P. J., Nickson, A. A., et al. (2018). The Folding Pathway of an Ig Domain is Conserved On and Off the Ribosome. Proceedings of the National Academy of Sciences, 201810523., 115(48), E11284-E11293. 
[6] Gessesse, B., Nagaike, T., Nagata, K., Shimizu, Y., & Ueda, T.. (2018). G-Protein Coupled Receptor Protein Synthesis on a Lipid Bilayer Using a Reconstituted Cell-Free Protein Synthesis System. Life, 8(4), 54.
[7] Kamiya, N., Ohama, Y., Minamihata, K., Wakabayashi, R., & Goto, M.. (2018). Liquid Marbles as an Easy‐to‐Handle Compartment for Cell‐Free Synthesis and In Situ Immobilization of Recombinant Proteins. Biotechnology journal,13(12). 
[8] Hayase, G., & Nomura, S. I. M.. (2018). Large-Scale Preparation of Giant Vesicles by Squeezing a Lipid-Coated Marshmallow-like Silicone Gel in a Buffer. Langmuir, 34(37), 11021-11026.
[9] Fujiwara, K., Ito, K., & Chiba, S.. (2018). MifM-instructed translation arrest involves nascent chain interactions with the exterior as well as the interior of the ribosome. Scientific reports, 8(1), 10311.
[10] Sugimoto, S., Arita-Morioka, K. I., Terao, A., Yamanaka, K., Ogura, T., & Mizunoe, Y.. (2018). Multitasking of Hsp70 chaperone in the biogenesis of bacterial functional   amyloids. Communications Biology, 1(1), 52.
[11] Kamiya, Y., Arimura, Y., Ooi, H., Kato, K., Liang, X. G., & Asanuma, H.. (2018). Development of Visible‐Light‐Responsive RNA Scissors Based on a 10–23 DNAzyme. ChemBioChem. 19, 1305-1311.
[12] Fujii, S., Sawa, T., Motohashi, H., & Akaike, T.. (2018). Persulfide synthases that are functionally coupled with translation mediate sulfur respiration in mammalian cells. British Journal of Pharmacology, 176(4), 607-615.
[13] Komura, R., Aoki, W., Motone, K., Satomura, A., & Ueda, M.. (2018). High-throughput evaluation of T7 promoter variants using biased randomization and DNA barcoding. PLOS ONE, 13(5), e0196905.
[14] van Nies, P., Westerlaken, I., Blanken, D., Salas, M., Mencía, M., & Danelon, C.. (2018).   Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nature communications, 9(1), 1583.
[15] Furusato, T., Horie, F., Matsubayashi, H. T., Amikura, K., Kuruma, Y., & Ueda, T.. (2018). De novo synthesis of basal bacterial cell division proteins FtsZ, FtsA, and ZipA inside giant vesicles. ACS synthetic biology, 7(4), 953-961.
[16] Natan, E., Endoh, T., Haim-Vilmovsky, L., Flock, T., Chalancon, G., Hopper, J. T., et al. (2018). Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nature structural & molecular biology, 25(3), 279.
[17] Ito, N., Katoh, K., Kushige, H., Saito, Y., Umemoto, T., Matsuzaki, Y., et al. (2018). Ribosome incorporation into somatic cells promotes lineage transdifferentiation towards multipotency. Scientific reports, 8(1), 1634.
[18] Reyes, S. G., Kuruma, Y., &   Tsuda, S.. (2017). Uncovering cell-free protein expression dynamics by a promoter library with diverse strengths. bioRxiv, 214593.
[19] Katano, Y., Li, T., Baba, M., Nakamura, M., Ito, M., Kojima, K., et al. (2017). Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system. Bioscience, biotechnology, and biochemistry, 81(12), 2339-2345.
[20] Chadani, Y., Niwa, T., Izumi, T., Sugata, N., Nagao, A., Suzuki, T., et al. (2017). Intrinsic ribosome destabilization underlies translation and provides an organism with a strategy of environmental sensing. Molecular cell, 68(3), 528-539.
[21] Akaike, T., Ida, T., Wei, F. Y., Nishida, M., Kumagai, Y., Alam, M. M., et al. (2017). Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nature communications, 8(1), 1177.
[22] Shepherd, T. R., Du, L., Liljeruhm, J., Wang, J., Sjödin, M. O., Wetterhall, M., et al. (2017). De novo design and synthesis of a 30-cistron translation-factor module. Nucleic acids research, 45(18), 10895-10905.
[23] Matsumoto, K. I., Yamazaki, K., Kawakami, S., Miyoshi, D., Ooi, T., Hashimoto, S., & Taguchi, S.. (2017). In vivo target exploration of apidaecin based on Acquired Resistance induced by Gene Overexpression (ARGO assay). Scientific reports, 7(1), 12136.
[24] Judd, J., Boucher, N., Van Roey, E., Gray, T. A., & Derbyshire, K. M.. (2017). Application of distributive conjugal DNA transfer in Mycobacterium smegmatis to establish a genome-wide synthetic genetic array. Journal of Bacteriology, 199(20).
[25] Goto, Y., Murakami, H., & Suga, H.. (2008). Initiating translation with D-amino acids. RNA, 14(7), 1390–1398.
[26] Ueta, M., Wada, C., Bessho, Y.,   Maeda, M., & Wada, A.. (2017). Ribosomal protein L31 in Escherichia coli contributes to ribosome subunit association and translation, whereas short L31 cleaved by protease 7 reduces both activities. Genes to Cells, 22(5), 452-471.
[27] Nilsson, O. B., Nickson, A. A., Hollins, J. J., Wickles, S., Steward, A., Beckmann, R., et al. (2017). Cotranslational folding of spectrin domains via partially structured states. Nature structural & molecular biology, 24(3), 221.
[28] Fan, Y., Hoshino, T., & Nakamura, A.. (2017). Identification of a VapBC toxin–antitoxin system in a thermophilic bacterium Thermus thermophilus HB27. Extremophiles, 21(1), 153-161.
[29] Scott, A., Noga, M. J., de Graaf, P., Westerlaken, I., Yildirim, E., & Danelon, C.. (2016).  Cell-free phospholipid biosynthesis by gene-encoded enzymes reconstituted in liposomes. PloS one, 11(10), e0163058.
[30] Nakayama, M., Komiya, S., Fujiwara, K., Horisawa, K., & Doi, N.. (2016). In vitro selection of bispecific diabody fragments using covalent bicistronic DNA display. Biochemical and biophysical research communications, 478(2), 606-611.
[31] Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., & Ueda, T.. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology, 19(8), 751-755.
[32] Radomska, K. A., Ordoñez, S. R., Wösten, M. M., Wagenaar, J. A., & van Putten, J. P.. (2016). Feedback control of Campylobacter jejuni flagellin levels through reciprocal binding   of FliW to flagellin and the global regulator CsrA. Molecular microbiology, 102(2), 207-220.
[33] Nilsson, O. B., Müllerlucks, A., Kramer, G., Bukau, B., & Heijne, G. V.. (2016). Trigger factor reduces the force exerted on the nascent chain by a cotranslationally folding protein. Journal of Molecular Biology, 428(6), 1356-1364.
[34] Chadani, Y., Niwa, T., Chiba, S., Taguchi, H., & Ito, K.. (2016). Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing. Proceedings of the National Academy of Sciences, 113(7), E829–E838.
[35] Ando, M., Akiyama, M., Okuno, D., Hirano, M., Ide, T., Sawada, S., et al. (2016). Liposome chaperon in cell-free membrane protein synthesis: one-step preparation of KcsA-integrated liposomes and electrophysiological analysis by the planar bilayer method. Biomaterials science, 4(2), 258-264.
[36] Shiraishi, A., Mochizuki, S., Miyakoshi, A., Kojoh, K., & Okada, Y.. (2016). Development of human neutralizing antibody to ADAMTS4 (aggrecanase-1) and ADAMTS5 (aggrecanase-2). Biochemical and biophysical research communications, 469(1),   62-69.
[37] Nagumo, Y., Fujiwara, K., Horisawa, K., Yanagawa, H., & Doi, N.. (2015). PURE mRNA display for in vitro selection of single-chain antibodies. The Journal of Biochemistry, 159(5), 519-526.
[38] Niwa, T., Sasaki, Y., Uemura, E., Nakamura, S., Akiyama, M., Ando, M.,et al. (2015).  Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Scientific reports, 5(1), 18025.
[39] Yamamoto, H., Shima, T., Yamaguchi, M., Mochizuki, Y., Hoshida, H., Kakuta, S.,et al. (2015). The thermotolerant yeast Kluyveromyces marxianus is a useful organism for   structural and biochemical studies of autophagy. Journal of Biological Chemistry, 290(49), 29506–29518.
[40] Ishii, E., Chiba, S., Hashimoto, N., Kojima, S., Homma, M., Ito, K., et al. (2015). Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria.Proceedings of the National Academy of Sciences, 112(40), E5513-E5522.
[41] Nilsson, O. B., Hedman, R., Marino, J., Wickles, S., Bischoff, L., Johansson, M., et al. (2015).   Cotranslational protein folding inside the ribosome exit tunnel. Cell reports, 12(10), 1533-1540.
[42] Kuruma, Y., & Ueda, T..  (2016). Corrigendum: the pure system for the cell-free synthesis of membrane   proteins. Nature Protocols, 11(3), 616.
[43] Morita, M., Onoe, H., Yanagisawa, M., Ito, H., Ichikawa, M., Fujiwara, K., et al. (2015). Droplet‐Shooting and Size‐Filtration (DSSF) Method for Synthesis of Cell‐Sized Liposomes with Controlled Lipid Compositions. ChemBioChem, 16(14), 2029-2035.
[44] Yamashita, H., Morita, M., Sugiura, H., Fujiwara, K., Onoe, H., & Takinoue, M.. (2015). Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device. Journal of bioscience and bioengineering, 119(4), 492-495.
[45] Nies, V., & Pauline.. (2015). monitoring mrna and protein levels in bulk and in model vesicle-based artificial cells. Methods in Enzymology, 550, 187-214.
[46] Ichihashi, N., Kobori, S., & Yomo, T..(2015). Simple Identification of Two Causes of Noise in an Aptazyme System by Monitoring Cell-Free Transcription. Methods in Enzymology, 550, 93-107.
[47] Kogure, H., Handa, Y., Nagata, M., Kanai, N., Peter Güntert, & Kubota, K., et al. (2014). Identification of residues required for stalled-ribosome rescue in the codon-independent release factor yaej. Nucleic Acids Research, 42(5),   3152.
[48] Shimizu, Y., Kuruma, Y., Kanamori, T., & Ueda, T.. (2014). The pure system for protein production. Methods in Molecular Biology, 1118(1118), 275-284.
[49] Jackson, K., Kanamori, T., Ueda, T., & Fan, Z. H.. (2014). Protein synthesis yield increased 72 times in the cell-free pure system. Integrative Biology, 6(8),781-788.
[50] Matsubayashi, H., Kuruma, Y., & Ueda, T.. (2014). In vitro synthesis of the e. coli sec translocon from dna. Angewandte Chemie International Edition in English, 53(29),   7535-7538.
[51] Nourian, Z., Scott, A., & Danelon, C.. (2014). Toward the assembly of a minimal divisome. Systems and Synthetic Biology, 8(3), 237-247.
[52] Sugimoto, N.. (2014). Noncanonical structures and their thermodynamics of dna and rna under molecular crowding: beyond the watson-crick double helix. Int Rev Cell Mol Biol, 307, 205-273.
[53] Fujiwara, K., Katayama, T., & Nomura, S. I.. (2013). Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system. Nucleic Acids Research, 41(14), 7176-7183.
[54] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2013). Translational halt during elongation caused by g-quadruplex formed by mrna. Methods, 64(1), 73-78.
[55] Hong, S. H., Ntai, I., Haimovich, A. D., Kelleher, N. L., Isaacs, F. J., & Jewett, M. C.. (2014). Cell-free protein synthesis from a release factor 1 deficient, escherichia coli, activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synthetic Biology, 3(6), 398-409.
[56] Chizzolini, F., Forlin, M., Cecchi, D., & Mansy, S. S.. (2013). Gene position more strongly   influences cell-free protein expression from operons than t7 transcriptional promoter strength. ACS Synthetic Biology, 3(6).
[57] Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y., & Yomo, T.. (2013). In vitro evolution of -hemolysin using a liposome display. Proceedings of the National Academy of Sciences, 110(42), 16796-16801.
[58] Nies, V., Pauline, Nourian, Zohreh, Kok, & Maurits, et al. (2013). Unbiased tracking of the progression of mrna and protein synthesis in; bulk and in liposome-confined reactions. Chembiochem A European Journal of Chemical Biology, 14(15), 1963-1966.
[59] Niederholtmeyer, H., Stepanova, V., & Maerkl, S. J.. (2013). Implementation of cell-free biological networks at steady state. Proceedings of the National Academy of Sciences, 110(40), 15985-15990.
[60] Lentini, R., Forlin, M., Martini, L., Bianco, C. D., Spencer, A. C., & Torino, D., et al. (2013).   Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology. ACS Synthetic Biology, 2(9), 482-489.
[61] Woolstenhulme, C. J., Parajuli,   S., Healey, D. W., Valverde, D. P., Petersen, E. N., & Starosta, A. L., et al. (2013). Nascent peptides that block protein synthesis in bacteria. Proceedings of the National Academy of Sciences, 110(10), E878-E887.
[62] Jewett, M. C., Fritz, B. R., Timmerman, L. E., & Church, G. M.. (2014). In vitro integration of  ribosomal rna synthesis, ribosome assembly, and translation. Molecular Systems Biology, 9(1), 678-678.
[63] Niederholtmeyer, H., Xu, L., & Maerkl, S. J.. (2013). Real-time mrna measurementduring an in vitro transcription and translationreaction using binary probes. ACS Synthetic Biology, 2(8), 411-417.
[64] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2013). Stability of rna quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Research, 41(12), 6222-6231.
[65] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2013). Suppression of gene expression by g-quadruplexes in open reading frames depends on g-quadruplex stability. Angewandte Chemie International Edition, 52(21), 5522-5526.
[66] Lee, K. B., Kim, H. C., Kim, D.  M., Kang, T. J., & Suga, H.. (2013). Comparative evaluation of two cell-free protein synthesis systems derived from escherichia coli for genetic code reprogramming. Journal of Biotechnology, 164(2), 330-335.
[67] Nakamura, Y., Ogura, M., Ogura, K., Tanaka, D., & Inagaki, N.. (2012). Sirt5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS letters, 586(23), 4076-4081.
[68] Fujino, Y., Fujita, R., Wada, K., Fujishige, K., & Ueda, T.. (2012). Robust in vitro affinity   maturation strategy based on interface-focused high-throughput mutational scanning. Biochemical and Biophysical Research Communications, 428(3), 395-400.
[69] Venancio-Marques, A., Liu, Y.-J., Diguet, A., di Maio, T., Gautier, A., & Baigl, D. (2012).   Modification-Free Photocontrol of β-Lactam Conversion with Spatiotemporal Resolution. ACS Synthetic Biology, 1(11), 526–531.
[70] Nicolini, C., Bragazzi, N., & Pechkova, E.. (2012). Nanoproteomics enabling personalized   nanomedicine. Advanced Drug Delivery Reviews, 64(13), 1522-1531.
[71] Matsuura, T., Hosoda, K., Kazuta, Y., Ichihashi, N., Suzuki, H., & Yomo, T.. (2012). Effects of compartment size on the kinetics of intracompartmental multimeric protein synthesis. ACS Synthetic Biology, 1(9), 431-437.
[72] Ong, H. J., Siau, J. W., Zhang, J. B., Hong, M., Flotow, H., & Ghadessy, F.. (2012). Analysis of p53 binding to dna by fluorescence imaging microscopy. Micron, 43(9), 996-1000.
[73] Shimizu, Y.. (2012). Arfa recruits rf2 into stalled ribosomes. Journal of molecular biology, 423(4), 624-631.
[74] Nagano, T., Kojima, K., Hisabori, T., Hayashi, H., Morita, E. H., & Kanamori, T., et al. (2012).  Elongation factor g is a critical target during oxidative damage to the translation system of escherichia coli. Journal of Biological Chemistry, 287(34), 28697-28704.
[75] Ying, & B.-W. (2003). A novel screening system for self-mrna targeting proteins. Journal   of Biochemistry, 133(4), 485-491.
[76] Kobori, S., Ichihashi, N., Kazuta, Y., Matsuura, T., & Yomo, T.. (2012). Kinetic analysis of   aptazyme-regulated gene expression in a cell-free translation system: modeling of ligand-dependent and -independent expression. Rna-a Publication of the Rna Society, 18(8), 1458-1465.
[77] Bruder, J., Siewert, K., Obermeier, B., Malotka, J., Scheinert, P., & Kellermann, J., et al.   (2012). Target specificity of an autoreactive pathogenic human γδ-T cell receptor in myositis. Journal of Biological Chemistry, 287(25), 20986-20995.
[78] Nishimura, K., Matsuura, T., Nishimura, K., Sunami, T., Suzuki, H., & Yomo, T.. (2012). Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry. Langmuir, 28(22), 8426-8432.
[79] Okano, T., Matsuura, T., Kazuta, Y., Suzuki, H., & Yomo, T.. (2012). Cell-free protein synthesis from a single copy of dna in a glass microchamber. Lab on a Chip, 12(15), 2704.
[80] Guarino, C., & Delisa, M. P.. (2012). A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins. Glycobiology, 22(5), 596-601.
[81] Stögbauer, T., Windhager, L., Zimmer, R., & Rädler, J. O. (2012). Experiment and mathematical modeling of gene expression dynamics in a cell-free system. Integrative Biology, 4(5), 494-501.
[82] Do, P. M., Varanasi, L., Fan, S., Li, C., Kubacka, I., & Newman, V., et al. (2012). Mutant p53 cooperates with ets2 to promote etoposide resistance. Genes & Development, 26(8), 830-845.
[83] Kriechbaumer, V., Wang, P., Hawes, C., & Abell, B. M.. (2012). Alternative splicing of the auxin biosynthesis gene yucca4 determines its subcellular compartmentation. The Plant Journal, 70(2), 292-302.
[84] Zhu, X., Ahmad, S. M., Aboukhalil, A., Busser, B. W., & Michelson, A. M.. (2012). Differential   regulation of mesodermal gene expression by drosophila cell type-specific forkhead transcription factors. Development, 139(8), 1457-1466.
[85] Guillen Schlippe, Y. V., Hartman, M. C. T., Josephson, K., & Szostak, J. W.. (2012). in vitror,   selection of highly modified cyclic peptides that act as tight binding inhibitors. Journal of the American Chemical Society, 134(25), 10469-10477.
[86] Takahashi, S., Tsuji, K., Ueda, T., & Okahata, Y.. (2012). Traveling time of a translating ribosome along messenger rna monitored directly on a quartz crystal microbalance. Journal of the American Chemical Society, 134(15), 6793-6800.
[87] Papenfort, K., Podkaminski, D., Hinton, J. C. D., & Jörg Vogel. (2012). The ancestral sgrs rna discriminates horizontally acquired salmonella mrnas through a single g-u wobble pair. Proceedings of the National Academy of Sciences, 109(13), E757-764.
[88] Danelon, C., Nourian, Z., Roelofsen, W., & Westerlaken, I.. (2012). Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Biophysical   Journal, 102(3), 715a.
[89] Rosenblum, G., Chen, C., Kaur, J., Cui, X., Goldman, Y. E., & Cooperman, B. S.. (2012). Real-time assay for testing components of protein synthesis. Nucleic Acids Research, 40(12), e88-e88.
[90] Machida, K., Masutani, M., Kobayashi, T., Mikami, S., Nishino, Y., & Miyazawa, A., et al. (2012). Reconstitution of the human chaperonin cct by co-expression of the eight   distinct subunits in mammalian cells. Protein Expression & Purification, 82(1), 61-69.
[91] Barendt, P. A., Shah, N. A., Barendt, G. A., Sarkar, C. A., & Hughes, D.. (2012). Broad-specificity mrna–rrna complementarity in efficient protein translation. PLoS Genetics, 8(3), e1002598.
[92] Wang, H. H., Huang, P.-Y., Xu, G., Haas, W., Marblestone, A., Li, J. et al.. (2012). Multiplexed in Vivo His-Tagging of Enzyme Pathways for in Vitro Single-Pot Multienzyme Catalysis. ACS Synthetic Biology, 1(2), 43–52.
[93] Holmqvist, E., Unoson, C., Reimegård, J., & Wagner, E. G. H. (2012). A mixed double negative feedback loop between the sRNA MicF and the global regulator Lrp. Molecular Microbiology, 84(3), 414–427. 
[94] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2012). Synchronized translationfor detection of temporalstalling of ribosome during single-turnover translation. Analytical Chemistry, 84(2), 857-861.
[95] Marcin, D., Reynolds, C. B., & Fairweather, N. F.. (2012). Clostridium difficile cell wall protein cwpv undergoes enzyme-independent intramolecular autoproteolysis. Journal of Biological Chemistry, 287(2), 1538-1544.
[96] Atsushi, O., Masayoshi, H., Shinsuke, S., & Yasuhiro, A.. (2012). A concept for selection of   codon-suppressor trnas based on read-through ribosome display in an in vitro compartmentalized cell-free translation system. Journal of Nucleic Acids, 2012, 538129.
[97] Lazzeriniospri, L., Stano, P., Luisi, P. L., & Marangoni, R.. (2012). Characterization of the emergent properties of a synthetic quasi-cellular system. Bmc Bioinformatics, 13(Suppl 4), S9.
[98] Nobuhide, D., Natsuko, Y.,   Hideaki, M., Yasutsugu, Y., Tetsuya, N., & Nobutaka, M., et al. (2012). Dna display selection of peptide ligands for a full-length human g protein-coupled receptor on cho-k1 cells. PLoS ONE, 7(1), e30084. 
[99] Harada, R., Furumoto, S., Yoshikawa, T., Ishikawa, Y., Shibuya, K., & Okamura, N., et al. (2012). Synthesis of [11c]interleukin 8 using a cell-free translation system and l-[11c]methionine. Nuclear Medicine & Biology, 39(1), 155-160.
[100] Wang, X., Morgan, R., Nugent, M. L., Gupta, Y., Xu, S., & Fomenkov, A., et al. (2011). Characterization of type ii and iii restriction-modification systems from bacillus cereus strains atcc 10987 and atcc 14579. Journal of Bacteriology, 194(1), 49-60.
[101] Hufton, S. E.. (2012). Affinity maturation and functional dissection of a humanised anti-rage monoclonal antibody by ribosome display. Methods in Molecular Biology, 805, 403-422.
[102] Ohashi, H., Kanamori, T., Osada, E., Akbar, B. K., & Ueda, T.. (2012). Peptide screening using pure ribosome display. Methods in Molecular Biology, 805(1), 251-259.
[103] Nishikawa, T., Sunami, T., Matsuura, T., & Yomo, T. (2012). Directed Evolution of Proteins throughIn VitroProtein Synthesis in Liposomes. Journal of Nucleic Acids, 2012, 1–11.
[104] Takeshi, S., Hiroshi, Y., & Nobuhide, D.. (2012). in vitro selection of fab fragments by mrna display and gene-linking emulsion pcr. Journal of Nucleic Acids, 2012, 1-9.
[105] Karig, D. K., Iyer, S., Simpson, M. L., & Doktycz, M. J.. (2012). Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Research, 40(8), 3763-3774.
[106] Niwa, T., Kanamori, T., Ueda, T., & Taguchi, H..(2012). Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc Natl Acad Sci USA, 109, 8937-8942.
[107] Kaiser, C., Goldman, D., Tinoco, I., & Bustamante, C.. (2012). The ribosome modulates nascent protein folding. Biophysical Journal, 102(3), 68a.
[108] Wang, W., Hara, S., Liu, M., Aigaki, T., Shimizu, S., & Ito, Y.. (2011). Polypeptide aptamer selection using a stabilized ribosome display. Journal of  Bioscience & Bioengineering, 112(5), 515-517.
[109] Gonza?Lez, D., Lokhande, N., Vadde, S., Zhao, Q., Cassill, A., & Renthal, R.. (2011). Luminescence resonance energy transfer in the cytoplasm of live escherichia coli cells. Biochemistry, 50(32), 6789-6796.
[110] Mallam, A. L., & Jackson, S. E.. (2011). Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nature Chemical Biology, 8(2), 147-153.
[111] Hensley, M. P., Tierney, D. L., & Crowder, M. W.. (2011). Zn(ii) binding to escherichia coli 70s ribosomes. Biochemistry, 50(46), 9937-9939.
[112] Pereira de Souza, T., Steiniger, F., Stano, P., Fahr, A., & Luisi, P. L. (2011). Spontaneous Crowding of Ribosomes and Proteins inside Vesicles: A Possible Mechanism for the Origin of Cell Metabolism. ChemBioChem, 12(15), 2325–2330.
[113] Grimm, S., Yu, F., & Nygren, P.-Å. (2011). Ribosome Display Selection of a Murine IgG1 Fab Binding Affibody Molecule Allowing Species Selective Recovery Of Monoclonal   Antibodies. Molecular Biotechnology, 48(3), 263–276.
[114] Yanagida, H., Matsuura, T., Kazuta, Y., & Yomo, T. (2011). In Vitro Selection of Proteins that Undergo Covalent Labeling with Small Molecules by Thiol-Disulfide Exchange by Using Ribosome Display. ChemBioChem, 12(6), 962–969.
[115] Welsh, J. P., Bonomo, J., &   Swartz, J. R.. (2011). Localization of bip to translating ribosomes increases   soluble accumulation of secreted eukaryotic proteins in an escherichia coli   cell-free system. Biotechnology & Bioengineering, 108(8),   1739-1748.
[116] Kihara, F., Niimi, T., Yamashita, O., & Yaginuma, T. (2011). Heat shock factor binds to heat shock elements upstream of heat shock protein 70a and Samui genes to confer transcriptional activity in Bombyx mori diapause eggs exposed to 5°C. Insect Biochemistry and Molecular Biology, 41(11), 843–851.
[117] Iizuka, R., Yamagishi-Shirasaki, M., & Funatsu, T.. (2011). Kinetic study of de novo chromophore maturation of fluorescent proteins. Biophysical Journal, 100(3), 486a.
[118] Ohtsuka, T., Neki, S., Kanai, T., Akiyoshi, K., Nomura, S. M., & Ohtsuki, T.. (2011). Synthesis and in situ insertion of a site-specific fluorescently labeled membrane protein into cell-sized liposomes. Analytical Biochemistry, 418(1), 97-101.
[119] Lam, K. N., Van Bakel, H., Cote, A. G., Anton, V. D. V., & Hughes, T. R.. (2011). Sequence specificity is obtained from the majority of modular c2h2 zinc-finger arrays. Nucleic Acids Research, 39(11), 4680-4690.
[120] De Masi, F., Grove, C. A., Vedenko, A., Alibés, A., Gisselbrecht, S. S., Serrano, L., et al. (2011). Using a structural and logics systems approach to infer bHLH–DNA binding specificity determinants. Nucleic Acids Research, 39(11), 4553–4563.
[121] Garza-Sánchez, F., Schaub, R. E., Janssen, B. D., & Hayes, C. S. (2011). tmRNA regulates synthesis of the ArfA ribosome rescue factor. Molecular Microbiology, 80(5), 1204–1219.
[122] Shingaki, T., & Nimura, N.. (2011). Improvement of translation efficiency in an escherichia coli cell-free protein system using cysteine. Protein Expression & Purification, 77(2), 193-197.
[123] Rosner, K., Kasprzak, M. F., Horenstein, A. C. J., Thurston, H. L., Abrams, J., & Kerwin, L. Y., et al. (2011). Engineering a waste management enzyme to overcome cancer resistance to apoptosis: adding dnase1 to the anti-cancer toolbox. Cancer Gene Therapy, 18(5), 346-357.
[124] Zhou, Z. P., Shimizu, Y.,   Tadakuma, H., Taguchi, H., Ito, K., & Ueda, T.. (2011). Single molecule imaging of the trans-translation entry process via anchoring of the tagged   ribosome. Journal of Biochemistry, 149(5), 609-618.
[125] Chiba, S., Kanamori, T., Ueda, T., Akiyama, Y., Pogliano, K., & Ito, K. (2011). Recruitment of a species-specific translational arrest module to monitor different cellular processes. Proceedings of the National Academy of Sciences, 108(15), 6073–6078.
[126] Yamamoto, S., Izumiya, H., Mitobe, J., Morita, M., Arakawa, E., & Ohnishi, M., et al. (2011). Identification of a chitin-induced small rna that regulates translation of the tfox gene, encoding a positive regulator of natural competence in vibrio cholerae. Journal of Bacteriology, 193(8), 1953.
[127] Subtelny, A. O., Hartman, M. C. T., & Szostak, J. W. (2011). Optimal Codon Choice Can Improve the Efficiency and Fidelity of N-Methyl Amino Acid Incorporation into Peptides by In-Vitro Translation. Angewandte Chemie International Edition, 50(14), 3164–3167.
[128] Handa, Yoshihiro, Inaho, Noriyuki, Nameki, & Nobukazu. (2011). Yaej is a novel ribosome-associated protein in escherichia coli that can hydrolyze peptidyl–trna on stalled ribosomes. Nucleic Acids Research, 39(5), 1739-1748.
[129] Ramu, H., Nora Vázquez-Laslop, Klepacki, D., Dai, Q., & Mankin, A. S.. (2011). Nascent peptide in the ribosome exit tunnel affects functional properties of the a-site of the peptidyl transferase center. Molecular cell, 41(3), 321-330.
[130] Panayiotou, C., Solaroli, N., Xu, Y., Johansson, M., & Karlsson, A.. (2011). The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic   parameters and structural organization among the family of adenylate kinase isoenzymes. Biochemical Journal, 433(3), 527.
[131] Narayan, V., Pion, E., Landre, V., Muller, P., & Ball, K. L.. (2011). Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase chip. Journal of Biological Chemistry, 286(1),   607-619.
[132] Lamichhane, T. N., Dinuka, A. N., Duc Anne-Cécile E., Cunningham, P. R., & Chow, C. S.. (2011). Selection of peptides targeting helix 31 of bacterial 16s ribosomal rna by screening m13 phage-display libraries. Molecules, 16(2), 1211-1239.
[133] Midon, M., Schafer, P., Pingoud, A., Ghosh, M., Moon, A. F., & Cuneo, M. J., et al. (2011). Mutational and biochemical analysis of the dna-entry nuclease enda from streptococcus   pneumoniae. Nucleic Acids Research, 39(2), 623-634.
[134] Ma, Z., & Hartman, M. C.. (2012). In vitro selection of unnatural cyclic peptide libraries via mrna display. Methods in Molecular Biology, 805, 367-390.
[135] Yamaguchi, T., Yoshinaga, N., Yazawa, T., Gen, K., & Kitano, T.. (2010). Cortisol is involved in temperature-dependent sex determination in the japanese flounder. Endocrinology, 151(8), 3900-3908.
[136] Ueda, T.. (2010). Ribosome display with the pure technology. Methods in Molecular Biology, 607, 219-225.
[137] Kuruma, Y., Suzuki, T., & Ueda, T.. (2010). Production of multi-subunit complexes on liposome through an e. coli cell-free expression system. Methods Mol Biol, 607, 161-171.
[138] Shimizu, Y., & Ueda, T.. (2010). Pure technology. Methods in Molecular Biology, 607, 11-21.
[139] Moritani, Y., Nomura, S. I. M., Morita, I., & Akiyoshi, K.. (2010). Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation. Febs Journal, 277(16), 3343-3352.
[140] Lakshmipathy, S. K., Gupta, R., Pinkert, S., Etchells, S. A., & Hartl, F. U.. (2010). Versatility of trigger factor interactions with ribosome-nascent chain complexes. Journal of Biological Chemistry, 285(36), 27911-27923.
[141] Haruichi, A., & Shaorong, C.. (2010). In vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis and detection of rna polymerase holoenzyme. Nucleic Acids Research, 38(13), e141.
[142] Theerthagiri, G., Eisenhardt, N., Schwarz, H., & Antonin, W.. (2010). The nucleoporin nup188 controls passage of membrane proteins across the nuclear pore complex. The Journal of Cell Biology, 189(7), 1129-1142.
[143] Shen, B. W., Heiter, D. F., Chan, S. H., Wang, H., Xu, S. Y., & Morgan, R. D., et al. (2010). Unusual target site disruption by the rare-cutting hnh restriction endonuclease paci.   Structure, 18(6), 734-743.
[144] Holmqvist, E., Reimeg?Rd, J., Sterk, M., Grantcharova, N., R?Mling, U., & Wagner, E. G. H.. (2010). Two antisense rnas target the transcriptional regulator csgd to inhibit curli synthesis. EMBO JOURNAL, 29(11), 1840-1850.
[145] Sunami, T., Hosoda, K., Suzuki, H., Matsuura, T., & Yomo, T.. (2010). Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. Langmuir, 26(11), 8544-8551.
[146] Bonomo, J., Welsh, J. P., Manthiram, K., & Swartz, J. R.. (2010). Comparing the functional   properties of the hsp70 chaperones, dnak and bip. Biophysical Chemistry, 149(1), 58-66.
[147] Nishiyama, K. I., Maeda, M., Abe, M., Kanamori, T., Shimamoto, K., & Kusumoto, S., et al. (2010). A novel complete reconstitution system for membrane integration of the simplest membrane protein. Biochemical & Biophysical Research Communications, 394(3), 733-736.
[148] Noto, T., Kurth, H. M., Kataoka, K., Aronica, L., Desouza, L. V., & Siu, K. W. M., et al. (2010). The tetrahymena argonaute-binding protein giw1p directs a mature argonaute-sirna complex to the nucleus. Cell, 140(5), 692-703.
[149] Matsumura, N., Tsuji, T., Sumida, T., Kokubo, M., Onimaru, M., & Doi, N., et al. (2010). Mrna display selection of a high-affinity, bcl-xl-specific binding peptide. The FASEB Journal, 24(7), 2201-2210.
[150] Osada, E., Shimizu, Y., Akbar, B. K., Kanamori, T., & Ueda, T.. (2009). Epitope mapping using ribosome display in a reconstituted cell-free protein synthesis system. Journal of Biochemistry, 145(5), 693-700.
[151] Tanner, D. R., Cariello, D. A., Woolstenhulme, C. J., Broadbent, M. A., & Buskirk, A. R.. (2009). Genetic identification of nascent peptides that induce ribosome stalling. Journal of Biological Chemistry, 284(50), 34809-34818.
[152] Sumida, T., Doi, N., & Yanagawa, H.. (2009). Bicistronic dna display for in vitro selection of fab fragments. Nucleic Acids Research, 37(22), e147.
[153] Eriko, M. S., Akihiko, T., Hiroyuki, T., Takuya, M., Tsutomu, N., & Tomoji, K.. (2009). Profiling of gene-dependent translational progress in cell-free protein synthesis by real-space imaging. Analytical Biochemistry, 394(2), 275-280.
[154] Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., & Terao, K., et al. (2009).   Roles of tom70 in import of presequence-containing mitochondrial proteins. Journal of Biological Chemistry, 284(46), 31635-31646.
[155] Göckler, N., Jofre, G., Papadopoulos, C., Soppa, U., Tejedor, F. J., & Becker, W.. (2009).   Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation. FEBS Journal, 276(21), 6324–6337.
[156] Uchida, I., Ishihara, R., Tanaka, K., Hata, E., Makino, S., & Kanno, T., et al. (2009). Salmonella enterica serotype typhimurium dt104 arta-dependent modification of pertussis toxin-sensitive g proteins in the presence of [32p]nad. Microbiology, 155(11),   3710-3718.
[157] Feng, Y., & Cronan, J. E.. (2009). A new member of the escherichia coli fad regulon: transcriptional regulation of fadm (ybaw). Journal of Bacteriology, 191(20), 6320-6328.
[158] Solaroli, N., Panayiotou, C., Johansson, M., & Karlsson, A.. (2009). Identification of two active functional domains of human adenylate kinase 5. Febs Letters, 583(17), 2872-2876.
[159] Pfeiffer, V., Papenfort, K., Lucchini, S., Hinton, J. C. D., & Vogel, J.. (2009). Coding sequence targeting by micc rna reveals bacterial mrna silencing downstream of translational initiation. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 16(8), 840-846.
[160] Estevez-Torres, A., Crozatier, C., Diguet, A., Hara, T., Saito, H., & Yoshikawa, K., et al. (2009). Sequence-independent and reversible photocontrol of transcription/expression   systems using a photosensitive nucleic acid binder. Proceedings of the National Academy of Sciences, 106(30), 12219-12223.
[161] Estevez-Torres, A., Crozatier, C., Diguet, A., Hara, T., Saito, H., & Yoshikawa, K., et al. (2009). Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder. Proceedings of the National Academy of Sciences, 106(30), 12219-12223.
[162] Takahashi, S., Iida, M., Furusawa, H., Shimizu, Y., Ueda, T., & Okahata, Y.. (2009). Real-time monitoring of cell-free translation on a quartz-crystal microbalance. Journal of the American Chemical Society, 131(26), 9326-9332.
[163] Kuroha, K., Horiguchi, N., Aiba, H., & Inada, T. (2009). Analysis of nonstop mRNA translation in the absence of tmRNA inEscherichia coli. Genes to Cells, 14(6), 739–749.
[164] Osada, E., Shimizu, Y., Akbar, B. K., Kanamori, T., & Ueda, T.. (2009). Epitope mapping using ribosome display in a reconstituted cell-free protein synthesis system. Journal of Biochemistry, 145(5), 693-700.
[165] Niwa, T., Ying, B. W., Saito, K., Jin, W., Takada, S., & Ueda, T., et al. (2009). Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of escherichia coli proteins. Proceedings of the National Academy of Sciences, 106(11), 4201-4206.
[166] Robin, Togashi, S., Ryder, D. M., Wall, A. G., & J., G.. (2009). Trigger factor from the psychrophilic bacterium psychrobacter frigidicola is a monomeric chaperone. Journal of Bacteriology, 191(4), 1162-1168.
[167] Matsuura, T., Kazuta, Y., Aita, T., Adachi, J., & Yomo, T.. (2009). Quantifying epistatic interactions among the components constituting the protein translation system. Molecular Systems Biology, 5(1).
[168] Zheng, Y., Posfai, J., Morgan, R. D., Vincze, T., & Roberts, R. J.. (2009). Using shotgun sequence data to find active restriction enzyme genes. Nucleic Acids Research, 37(1), e1.
[169] Hosoda, K., Sunami, T., Kazuta, Y., Matsuura, T., Suzuki, H., & Yomo, T.. (2008). Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir, 24(23), 13540-13548.
[170] Terashima, H., Abe-Yoshizumi, R., Kojima, S., & Homma, M.. (2008). Cell-free synthesis of the torque-generating membrane proteins, poma and pomb, of the na+-driven flagellar motor in vibrio alginolyticus. Journal of Biochemistry, 144(5), 635-642. 
[171] Kazuta, Y., Adachi, J., Matsuura, T., Ono, N., Mori, H., & Yomo, T.. (2008). Comprehensive   analysis of the effects of escherichia coli orfs on protein translation reaction. Molecular & Cellular Proteomics, 7(8), 1530-1540.
[172] Maki, K., Uno, K., Morita, T., & Aiba, H.. (2008). Rna, but not protein partners, is directly   responsible for translational silencing by a bacterial hfq-binding small rna. Proceedings of the National Academy of Sciences, 105(30), 10332-10337.
[173] Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., & Ueda, T., et al. (2008). Single-molecule imaging of full protein synthesis by immobilized ribosomes. Nucleic Acids Research, 36(12), e70.
[174] Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., & Ueda, T., et al. (2008). Single-molecule imaging of full protein synthesis by immobilized ribosomes. Nucleic Acids Research, 36(12), e70.
[175] Sako, Y., Morimoto, J., Murakami, H., & Suga, H.. (2008). Ribosomal synthesis of bicyclic   peptides via two orthogonal inter-side-chain reactions. Journal of the American Chemical Society, 130(23), 7232-7234.
[176] Vazquezlaslop, N., Thum, C., & Mankin, A. S.. (2008). Molecular mechanism of drug-dependent ribosome stalling. Molecular Cell, 30(2), 190-202.
[177] Sako, Y., Goto, Y., Murakami, H., & Suga, H.. (2008). Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond. ACS Chemical Biology, 3(4), 241-249.
[178] Urban, J. H., & Vogel, J.. (2008). Two seemingly homologous noncoding rnas act hierarchically to activate glms mrna translation. PLoS Biology, 6(3), e64.
[179] Ozaki, Y., Suzuki, T., Kuruma, Y., Ueda, T., & Yoshida, M.. (2008). Unci protein can mediate ring-assembly of c-subunits of fof1-atp synthase in vitro. Biochemical & Biophysical Research Communications, 367(3), 663-666.
[180] Sakamoto, A., Yamagishi, M., Watanabe, T., Aizawa, Y., Kato, T., & Funatsu, T.. (2008). Fluorescence labeling of a cytokine with desthiobiotin-tagged fluorescent puromycin. Journal of Bioscience & Bioengineering, 105(3), 238-242.
[181] Goto, Y., Ohta, A., Sako, Y., Yamagishi, Y., Murakami, H., & Suga, H.. (2008). Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chemical Biology, 3(2), 120-129.
[182] Kawakami, T., Murakami, H., & Suga, H.. (2008). Messenger rna-programmed incorporation of multiple n-methyl-amino acids into linear and cyclic peptides. Chemistry & Biology, 15(1), 32-42.
[183] Neely, R. K., & Roberts, R. J.. (2008). The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs. BMC Molecular Biology, 9(1), 48.
[184] Hillebrecht, J. R., & Chong, S.. (2008). A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnology, 8(1), 58.
[185] Yanagida, H., Matsuura, T., & Yomo, T.. (2008). Compensatory evolution of a ww domain variant lacking the strictly conserved trp residue. Journal of Molecular Evolution, 66(1), 61-71.
[186] Ohta, A., Murakami, H., Higashimura, E., & Suga, H.. (2007). Synthesis of polyester by means of genetic code reprogramming. Chemistry & Biology (Cambridge), 14(12), 1315-1322.
[187] Doi, Y., Ohtsuki, T., Shimizu, Y., Ueda, T., & Sisido, M.. (2007). Elongation factor tu mutants expand amino acid tolerance of protein biosynthesis system. Journal of the American Chemical Society, 129(46), 14458-14462.
[188] Murtas, G., Kuruma, Y., Bianchini, P., Diaspro, A., & Luisi, P. L. (2007). Protein synthesis in   liposomes with a minimal set of enzymes. Biochemical and Biophysical Research Communications, 363(1), 12–17.
[189] Sharma, C. M., Darfeuille, F., Plantinga, T. H., & Vogel, J.. (2007). A small rna regulates multiple abc transporter mrnas by targeting c/a-rich elements inside and upstream of   ribosome-binding sites. Genes & Development, 21(21),   2804-2817.
[190] Kojima, K., Oshita, M., Nanjo, Y., Kasai, K., Tozawa, Y., Hayashi, H., & Nishiyama, Y. (2007). Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Molecular Microbiology, 65(4), 936–947.
[191] Sando, S., Abe, K., Sato, N., Shibata, T., Mizusawa, K., & Aoyama, Y. (2007). Unexpected Preference of theE. coliTranslation System for the Ester Bond during Incorporation of Backbone-Elongated Substrates. Journal of the American Chemical Society, 129(19), 6180–6186.
[192] Lakshmipathy, S. K., Tomic, S., Kaiser, C. M., Chang, H. C., Genevaux, P., & Georgopoulos, C., et al. (2007). Identification of nascent chain interaction sites on trigger factor. Journal of Biological Chemistry, 282(16), 12186-12193.
[193] Matsuura, T., Yanagida, H., Ushioda, J., Urabe, I., & Yomo, T. (2007). Nascent chain, mRNA, and ribosome complexes generated by a pure translation system. Biochemical and Biophysical Research Communications, 352(2), 372–377.
[194] Ohashi, H., Shimizu, Y., Ying, B. W., & Ueda, T.. (2007). Efficient protein selection based on ribosome display system with purified components. Biochemical & Biophysical Research Communications, 352(1), 270-276.
[195] Udagawa, T., Shimizu, Y., &   Ueda, T.. (2004). Evidence for the translation initiation of leaderless mrnas by the intact 70 s ribosome without its dissociation into subunits in   eubacteria. Journal of Biological Chemistry, 279(10), 8539-8546.
[196] Ueno, S., Arai, H., Suzuki, M., & Husimi, Y.. (2007). An mrna-protein fusion at n-terminus for evolutionary protein engineering. International Journal of Biological Sciences, 3(6), 365-374.
[197] Narita, A., Ogawa, K., Sando, S., & Aoyama, Y.. (2007). cis-regulatory hairpin-shaped mrna encoding a reporter protein: catalytic sensing of nucleic acid sequence at single nucleotide resolution. NATURE PROTOCOLS, 2(5), 1105-1116.
[198] Yoshimori, A., Sakai, J., Sunaga, S., Kobayashi, T., & Tanuma, S. I.. (2007). Structural and   functional definition of the specificity of a novel caspase-3 inhibitor, ac-dnld-cho. BMC Pharmacology, 7(1), 8.
[199] Kawahashi, Y., Doi, N., Oishi, Y., Tsuda, C., Takashima, H., & Baba, T., et al. (2006). High-throughput fluorescence labelling of full-length cdna products based on a reconstituted   translation system. Journal of Biochemistry, 141(1), 19-24.
[200] Saguy, M., Gillet, R., Skorski, P., Hermann-Le Denmat, S., & Felden, B.. (2007). Ribosomal protein s1 influences trans-translation in vitro and in vivo. Nucleic Acids Research, 35(7), 2368-2376.
[201] Zheng, Y., & Roberts, R. J.. (2007). Selection of restriction endonucleases using artificial cells. Nucleic Acids Research, 35(11), e83.
[202] Setoguchi, K., Otera, H., & Mihara, K.. (2006). Cytosolic factor- and tom-independent import of c-tail-anchored mitochondrial outer membrane proteins. EMBO JOURNAL, 25(24), 5635-5647.
[203] Sunami, T., Sato, K., Matsuura, T., Tsukada, K., Urabe, I., & Yomo, T.. (2006). Femtoliter compartment in liposomes for in vitro selection of proteins. Analytical Biochemistry, 357(1), 128-136.
[204] Ying, & B.-W. (2006). Co-translational binding of groel to nascent polypeptides is followed by post-translational encapsulation by groes to mediate protein folding. Journal of Biological Chemistry, 281(31), 21813-21819.
[205] Ishihara, N., Fujita, Y., Oka, T., & Mihara, K.. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of opa1. EMBO JOURNAL, 25(13), 2966-2977.
[206] Groves, M., Lane, S.,Douthwaite, J., Lowne, D., Rees, D. G., & Edwards, B., et al. (2012).   Affinity maturation of phage display antibody populations using ribosome display. Methods in Molecular Biology, 313(1), 129-139.
[207] Villemagne, D., Jackson, R., & Douthwaite, J. A.. (2006). Highly efficient ribosome display selection by use of purified components for in vitro translation. Journal of Immunological Methods, 313(1-2), 140-148.
[208] Yamamoto, T., Izumi, S., & Gekko, K.. (2006). Mass spectrometry of hydrogen/deuterium exchange in 70s ribosomal proteins from e. coli. Febs Letters, 580(15), 0-3642.
[209] Shimizu, Y., & Ueda, T.. (2006). Smpb triggers gtp hydrolysis of elongation factor tu on ribosomes by compensating for the lack of codon-anticodon interaction during trans-translation initiation. Journal of Biological Chemistry, 281(23), 15987-15996.
[210] Seebeck, F. P., & Szostak, J. W.. (2006). Ribosomal synthesis of dehydroalanine-containing peptides. Journal of the American Chemical Society, 128(22), 7150-7151.
[211] Kubota, S., Kubota, H., & Nagata, K.. (2006). Cytosolic chaperonin protects folding intermediates of gβ from aggregation by recognizing hydrophobic β-strands. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8360-8365.
[212] Muto, H., Nakatogawa, H., & Ito, K.. (2006). Genetically encoded but nonpolypeptide prolyl-trna functions in the a site for secm-mediated ribosomal stall. Molecular Cell, 22(4), 545-552.
[213] Murakami, H., Ohta, A., Ashigai, H., & Suga, H.. (2006). A highly flexible trna acylation method for non-natural polypeptide synthesis. Nature Methods, 3(5), 357-359.
[214] Umekage, S., & Ueda, T.. (2006). Spermidine inhibits transient and stable ribosome subunit dissociation. Febs Letters, 580(5), 0-1226.
[215] Itoh, H., Kawazoe, Y., & Shiba, T.. (2006). Enhancement of protein synthesis by an inorganic polyphosphate in an e. coli cell-free system. Journal of  Microbiological Methods, 64(2), 241-249.
[216] Ogawa, A., Sando, S., & Aoyama, Y.. (2010). Termination‐free prokaryotic protein translation by using anticodon‐adjusted e. coli trnaser as unified suppressors of the   uaa/uga/uag stop codons. read‐through ribosome display of full‐length dhfr with translated utr as a buried spacer arm. Chembiochem, 7(2), 249-252.
[217] Tomic, S., Johnson, A. E., Hartl, F. U., & Etchells, S. A. (2005). Exploring the capacity of trigger factor to function as a shield for ribosome bound polypeptide chains. FEBS Letters, 580(1), 72–76.
[218] Hallier, M. (2006). Small protein B interacts with the large and the small subunits of a stalled ribosome during trans-translation. Nucleic Acids Research, 34(6), 1935–1943.
[219] Jarutat, T., Frisch, C., Nickels, C., Merz, H., & Knappik, A.. (2006). Isolation and comparative characterization of ki-67 equivalent antibodies from the hucal? phage display library. Biological Chemistry, 387(7).
[220] Josephson, K., Hartman, M. C. T., & Szostak, J. W. (2005). Ribosomal Synthesis of Unnatural Peptides. Journal of the American Chemical Society, 127(33), 11727–11735.
[221] Shimizu, Y., Kanamori, T., & Ueda, T.. (2005). Protein synthesis by pure translation systems. Methods (Amsterdam), 36(3), 299-304.
[222] Sando, S., Kanatani, K., Sato, N., Matsumoto, H., Hohsaka, T., & Aoyama, Y.. (2005). A   small-molecule-based approach to sense codon-templated natural-unnatural hybrid peptides. selective silencing and reassignment of the sense codon by orthogonal reacylation stalling at the single-codon level. Journal of the American Chemical Society, 127(22), 7998-7999.
[223] Fukushima, K., Ikehara, Y., & Yamashita, K. (2005). Functional Role Played by the Glycosylphosphatidylinositol Anchor Glycan of CD48 in Interleukin-18-induced   Interferon-γ Production. Journal of Biological Chemistry, 280(18), 18056–18062.
[224] Yano, M., Okano, H. J., & Okano, H.. (2005). Involvement of hu and heterogeneous nuclear ribonucleoprotein k in neuronal differentiation through p21 mrna post-transcriptional regulation. Journal of Biological Chemistry, 280(13), 12690-12699.
[225] Ying, B. W., Taguchi, H., Kondo, M., & Ueda, T.. (2005). Co-translational involvement of the chaperonin groel in the folding of newly translated polypeptides. Journal of Biological Chemistry, 280(12), 12035-12040.
[226] Tokunaga, M., Mizukami, M., & Tanaka, R.. (2005). Novel processing and localization of cata, ccda associated thiol-disulfide oxidoreductase, in protein hyper-producing bacterium brevibacillus choshinensis. Protein & Peptide Letters, 12(1), 95-98. 
[227] Kuruma, Y., Nishiyama, K. I., Shimizu, Y., Matthias Müller, & Ueda, T.. (2005). Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins. Biotechnology progress, 21(4), 1243-1251.
[228] Ying, B.-W., Taguchi, H., Ueda, H., & Ueda, T. (2004). Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system. Biochemical and Biophysical Research Communications, 320(4), 1359–1364.
[229] Asai, T., Takahashi, T., Esaki, M., Nishikawa, S. I., Ohtsuka, K., & Nakai, M., et al. (2004).   Reinvestigation of the requirement of cytosolic atp for mitochondrial protein import. Journal of Biological Chemistry, 279(19), 19464-19470.
[230] Kawano, M., Suzuki, S., Suzuki, M., Oki, J., & Imamura, T.. (2004). Bulge- and basal layer-specific expression of fibroblast growth factor-13 (fhf-2) in mouse skin. Journal of Investigative Dermatology, 122(5), 1084-1090.

产品编号 产品名称 产品规格 产品等级 产品价格
GFK-PF201-0.25-EX PUREfrex® 2.0 1KIT
GFK-PF201-0.25-5-EX PUREfrex® 2.0 1KIT
GFK-PF213-0.25-EX PUREfrex® 2.1 1KIT
GFK-PF213-0.25-5-EX PUREfrex® 2.1 1KIT
GFK-PF003-0.5-EX DnaK Mix 1KIT
GFK-PF004-0.5-EX GroE Mix 1KIT
GFK-PF005-0.5-EX DS supplement 1KIT

Fisher 卡合式组件15-077-943-赛默飞中国代理商

产品信息
产品名称:
Fisher 卡合式组件
产品型号:
15-077-943
Fisher 卡合式组件15-077-943 产品特点
  Fisher 卡合式组件技术参数/订购信息订货号FIS15-077-943证书(NIST/A2LA)有量程-58至572℉/-50至300℃分辨率0.1&#176;精度&#177;1℃探针长度/线缆长度70mm/3m

Fisher 卡合式组件15-077-943
产品详细信息:

Fisher Scientific Traceable卡合式组件(配探针)

产品特色

● 这种多功能组件是面板安装的, 采用卡合方式来固定到位,但也 可以采用单立式。装置配有不锈 钢探针,专门配有 3 米的加长电 缆和易于抓握的手柄。

四位数液晶显示屏高度 19 毫米,易于察看

● 装置可以记录任何时间段内的最低温和最高温读数,并保存在内 存中。它的温度量程基本上囊括了所有的测试要求:具备 -58 到 572℉、-50 到 300℃的量程。在 -20 到 200°之间的分辨率为 0.1°(在此范围之外则为 1°),精度在 -20 到 100℃之间为 ±1℃。读数每秒刷新。

精度符合国家标准技术研究院的规定

● 为了确保精度,这款温度计由 A2LA(A2LA 与 CNAL 的校准证 书是互相承认的)认可的 ISO 17025 校准实验室颁发了单独编号 的 Traceable 证书。这份证书表明,此项产品符合美国国家标准 技术研究院(NIST)颁布的标准。

● 尺寸:38毫米高,62毫米宽,12.7毫米深。它的探针直径为3.5毫米, 探针长度(包括手柄)为 70 毫米,电缆长度 1 米。供货时配有 Traceable 证书、探针、电缆和电池。