921-021-ART移液器吸头 100μL-

产地类别 进口    

ART移液器吸头 100μL
目录号 产品描述 包装
921-021 80μL无色,无菌,带滤芯 96个/盒,10盒/包装,5包装/箱

使用 Thermo Scientific™ 自动化吸头可提高 Caliper™ Zymark™ 液体处理工作站的移液性能,每个吸头都会接受 15 项严格的质量控制以确保*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液器吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头以及采用 Thermo Scientific™ ART™ 过滤器技术的吸头
生产期间在实际使用的工作站进行过批次检验
变异系数百分比(%CV)低

货号                                        描述                                    价格

921-021 200ul 无色透明吸头,预灭菌,96支/盒,10盒/包装 30.76 
921-261 100ul 无色透明吸头,预灭菌,96支/盒,10盒/包装 25.92 
921-262 100ul 无色透明吸头,未灭菌,96支/盒,10盒/包装 25.52 

7590-002-whatman WTP聚四氟乙烯PTFE滤膜 1um25mm-聚四氟乙烯PTFE膜

品牌 其他品牌 货号 7590-002
供货周期 现货 应用领域 医疗/卫生,环保/水工业,生物产业,综合

7590-002 whatman WTP聚四氟乙烯PTFE滤膜 1um25mm,Teflon(PTFE)膜 ,化学稳定性和惰性 ,PTFE适用于化学腐蚀性强的有机溶剂、水溶液和气体,它对大多数的酸性、碱性和溶液都有抗性,非亲水性膜,蛋白吸附力低,有很好的化学相容性。

7590-002 whatman WTP聚四氟乙烯PTFE滤膜 1um25mm

WTP 型和 TE 型

WTP 型采用网格状聚丙烯作为支撑材料,TE 型采用无序聚丙烯材料作为支撑材料。

Whatman PTFE 膜的化学稳定性和惰性使其适于腐蚀性强的有机溶剂、强酸和强碱。PTFE膜还非常适合 

于 HPLC 样品的制备。其天然的疏水性也非常适合于空气和气体灭菌#。PTFE 膜被压层到无纺布聚丙烯支撑

网上用来提高强度和可操作性,并且可以在高达120ºC高温下使用。

化学稳定性和惰性
PTFE 滤膜适用于能够腐蚀其他种类滤膜的强腐蚀性有机溶剂,液体和气体。它耐受大多数的酸,碱和其他试剂。

应用

PTFE 膜的主要应用之一是澄清那些腐蚀剂、有机溶剂和强氧化性溶液。包括制备HPLC 上机前的液态样本,可避免外源颗粒物进入而破坏色谱柱,一般使用 0.5μm孔径。空气与气体灭菌用到PTFE 膜的疏水性,阻隔气态水,通常使用0.2μm 和 0.5μm孔径,在线灭菌 # 应用必须使用 0.2μm 孔径。多头抽真空装置,发酵罐和无菌过滤管和容器的无菌呼吸器需要使用 0.2μm 的 PTFE 滤膜。

7590-002 whatman WTP聚四氟乙烯PTFE滤膜 1um25mm

订购信息

7582-002 PTFE 25MM 0.2uM 100/PK
7582-004 PTFE 47MM 0.2uM 100/PK
7585-004 PTFE 47MM 0.5uM 100/PK
7590-002 PTFE 25MM 1.0uM 100/PK
7590-004 PTFE 47MM 1.0uM 100/PK

920-021-ART移液器吸头 50μL-

产地类别 进口    

ART移液器吸头 50μL
目录号 产品描述 包装
920-021 50μL无色,无菌,带滤芯 96个/盒,10盒/包装,5包装/箱

使用 Thermo Scientific™ 自动化吸头可提高 Caliper™ Zymark™ 液体处理工作站的移液性能,每个吸头都会接受 15 项严格的质量控制以确保*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液器吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头以及采用 Thermo Scientific™ ART™ 过滤器技术的吸头
生产期间在实际使用的工作站进行过批次检验
变异系数百分比(%CV)低

货号                                          描述                                 价格

920-021 40ul 无色透明,ART自封闭吸头,预灭菌,96支/盒,10盒/包装 36.62 
920-261 50ul 无色透明吸头,预灭菌,96支/盒,10盒/包装 31.78 
920-262 50ul 无色透明吸头,未灭菌,96支/盒,10盒/包装 30.39 

953-261-ART移液器吸头 1100μL-

产地类别 进口    

ART移液器吸头 1100μL
目录号 产品描述 包装
953-261 1100μL无色,无菌 96个/板10板/箱

使用 Thermo Scientific™ 自动化吸头可提高 Qiagen™ 通用型移液系统的移液性能,每个吸头都会接受 15 项严格的质量控制以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头以及采用 ART™ 过滤器技术的吸头
生产期间在实际使用的工作站进行过批次检验
变异系数百分比(%CV)低

货号                                        价格                                          描述

953-261 1100ul 无色透明吸头,预灭菌,96支/盒,10盒/包装 68.62 
953-262 1100ul 无色透明吸头,未灭菌,96支/盒,10盒/包装 64.30 

951-261-ART移液器吸头 300μL-

产地类别 进口    

ART移液器吸头 300μL
目录号 产品描述 包装
951-021 250μL无色,无菌,带滤芯 96个/板,10板/箱

使用 Thermo Scientific™ 自动化吸头可提高 Qiagen™ 通用型移液系统的移液性能,每个吸头都会接受 15 项严格的质量控制以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头以及采用 ART™ 过滤器技术的吸头
生产期间在实际使用的工作站进行过批次检验
变异系数百分比(%CV)低

货号                                     描述                                       价格

951-261 300ul 无色透明吸头,预灭菌,96支/盒,10盒/包装 59.22 
951-262 300ul 无色透明吸头,未灭菌,96支/盒,10盒/包装 54.92 
951-021 250ul 无色透明,ART自封闭吸头,预灭菌,96支/盒,10盒/包装 61.40 

Shibayagi 小鼠胰岛素 ELISA试剂盒(T型)

Shibayagi 小鼠胰岛素 ELISA试剂盒(T型)
Lbis® Insulin-Mouse-T

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Lbis® Insulin-Mouse-TShibayagi 小鼠胰岛素 ELISA试剂盒(T型)

Shibayagi 小鼠胰岛素 ELISA试剂盒(T型)

Shibayagi 小鼠胰岛素 ELISA试剂盒(T型)

  胰岛素是由胰脏内的胰岛β细胞分泌,分子量约5800,等电点在5.4左右的一种蛋白质激素。

  A6-A11、A7-B7、A20-B-19之间形成二硫键,在酸性溶液或者不含Zn离子的中性水溶液中形成二聚体,在含锌离子的中性溶液中,则形成含2个Zn离子的六聚体。

  肝脏、肌肉、脂肪组织是主要的靶组织,分别有以下的作用。

肝脏:促进糖原、蛋白质、脂肪酸合成、促进糖类的摄取和利用、抑制糖异生。

肌肉:糖类、氨基酸、K细胞膜通透性增大、促进糖原、蛋白质的合成、抑制蛋白质分解。

脂肪组织:葡萄糖细胞膜通透性增大、促进脂肪酸的合成。

  胰岛素是细胞内的合成单链胰岛素原通过二硫键结合一起形成的。在酶分解作用下被激活,C肽和胰岛素分离。

◆特点

● 短时间测定(总的反应时间:3小时)

● 微量样品(标准操作:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

● 操作简便,不需要特别的预处理

● 有效期限为12个月

◆构成

组成部分

状态

容量

(A) 抗体固相化 96孔板

洗净后使用

96 wells(8×12)/1 块

(B) 胰岛素标准溶液(小鼠)(200 ng/mL)

稀释后使用

25 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D) 生物素结合抗胰岛素抗体

稀释后使用

10 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

20 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M   H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

3 张

使用说明书

1 份

◆样品信息

小鼠的血清、血浆、培养液

10 μL/well(标准操作)

※血浆采血建议使用肝素处理血液

 

◆测量范围

0.156~10 ng/mL(标准曲线范围)

◆Validation data

精度测试(检测内变动系数)

样品

A

B

C

D

mean

0.882

1.15

3.67

5.25

SD

0.0245

0.0213

0.0649

0.0792

CV(%)

2.78

1.87

1.77

1.51

单位:ng/mL n=10

 

再现性测试(检测内变动系数)

测量日/样品

E

F

G

第0天

5.253

1.224

0.513

第1天

5.322

1.312

0.523

第2天

5.365

1.269

0.512

第3天

5.362

1.281

0.535

mean

5.326

1.272

0.521

SD

0.0520

0.0366

0.0109

CV(%)

3.31

3.76

4.65

单位:ng/mL n=3

 

加标回收测试

 

样品H

添加量

实测值

回收量

回收率(%)

0

1.350

0.25

1.593

0.243

97.2

0.50

1.841

0.491

98.2

0.75

2.065

0.715

95.3

1.00

2.299

0.949

94.9

单位:ng/mL n=3

 

样品I

添加量

实测值

回收量

回收率(%)

0

1.941

0.50

2.496

0.505

101

0.75

2.728

0.737

98.3

1.00

2.955

0.964

96.4

1.50

3.431

1.440

96.0

单位:ng/mL n=3

 

稀释直线性测试

 

用稀释缓冲液分3次连续稀释3个血清样品的测量结果,直线回归方程的R2在0.993~0.999之间。

相关资料


Shibayagi 小鼠胰岛素 ELISA试剂盒(T型) Shibayagi 小鼠胰岛素 ELISA试剂盒(T型) Shibayagi 小鼠胰岛素 ELISA试剂盒(T型)
说明书

ELISA试剂盒选择指南①②

ELISA试剂盒选择指③④

参考文献



 1.

Endoplasmic Reticulum Stress in Mice Increases Hepatic Expression of Genes Carrying a Premature Termination Codon via a Nutritional Status-Independent GRP78-Dependent Mechanism.Harada N, Okuyama M, Yoshikatsu A, Yamamoto H, Ishiwata S, Hamada C, Hirose T, Shono M, Kuroda M, Tsutsumi R, Takeo J, Taketani Y, Nakaya Y, Sakaue H.J Cell Biochem. 2017 Nov;118(11):3810-3824.


 2.

Effects of β-Glucan Content and Pearling of Barley in Diet-Induced Obese MiceSeiichiro Aoe, Yasunori Ichinose, Noriko Kohyama, Kozo Komae, Asuka Takahashi, Toji Yoshioka, and Takashi Yanagisawa.Posted online on 27 Sep 2017. https://doi.org/10.1094/CCHEM-04-17-0083-R

 3.

10-Hydroxy-2-decenoic acid, a natural product, improves hyperglycemia and insulin resistance in obese/diabetic KK-Ay mice, but does not prevent obesity Risa WATADANI, Jun KOTOH, Daiki SASAKI, Azusa SOMEYA, Kozo MATSUMOTO, Akihiko MAEDA Journal of Veterinary Medical Science, Vol. 79 (2017) No. 9 Sept, p.1596-1602


 4.

S-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice. Horiuchi H, Usami A, Shirai R, Harada N, Ikushiro S, Sakaki T, Nakano Y, Inui H, Yamaji R. J Nutr. 2017 Sep;147(9):1631-1639.


 5.

Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice. Hirata T, Yoshitomi T, Inoue M, Iigo Y, Matsumoto K, Kubota K, Shinagawa A. Gene. 2017 Sep 20;629:52-58.


 6.

Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Taguchi K, Hida M, Hasegawa M, Narimatsu H, Matsumoto T, Kobayashi T. Sci Rep. 2017 Aug 16;7(1):8436.


 7.

Gender difference in NASH susceptibility: Roles of hepatocyte Ikkβ and Sult1e1. Matsushita N, Hassanein MT, Martinez-Clemente M, Lazaro R, French SW, Xie W, Lai K, Karin M, Tsukamoto H. PLoS One. 2017 Aug 10;12(8):e0181052.


 8.

Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice. E S, Yamamoto K, Sakamoto Y, Mizowaki Y, Iwagaki Y, Kimura T, Nakagawa K, Miyazawa T, Tsuduki T. J Clin Biochem Nutr. 2017 Jul;61(1):47-52.


 9.

Sake lees extract improves hepatic lipid accumulation in high fat diet-fed mice. Kubo H, Hoshi M, Matsumoto T, Irie M, Oura S, Tsutsumi H, Hata Y, Yamamoto Y, Saito K Lipids Health Dis. 2017 Jun 3;16(1):106.


10.

Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. Tang Y, Choi EJ, Han WC, Oh M, Kim J, Hwang JY, Park PJ, Moon SH, Kim YS, Kim EK. J Med Food. 2017 May;20(5):502-510.


11.

4μ8C Inhibits Insulin Secretion Independent of IRE1α RNase Activity. Sato H, Shiba Y, Tsuchiya Y, Saito M, Kohno K. Cell Struct Funct. 2017 May 3;42(1):61-70


12.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Apr;66(4):868-879.


13.

Prevention and treatment effect of evogliptin on hepatic steatosis in high-fat-fed animal models. Kim MK, Chae YN, Ahn GJ, Shin CY, Choi SH, Yang EK, Sohn YS, Son MH Arch Pharm Res. 2017 Feb;40(2):268-281.


14.

Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice. Mei YOSHIDA, Kaori HAYASHI,  Risa WATADANI,  Yoshiyasu OKANO, Keiya TANIMURA, Jun KOTOH, Daiki SASAKI,  Kozo MATSUMOTO,  Akihiko MAEDA Journal of Veterinary Medical Science, Vol. 79 (2017)  No. 2 February p. 299-307


15.

PDK1-FoxO1 pathway in AgRP neurons of arcuate nucleus promotes bone formation via GHRH-GH-IGF1 axis. Sasanuma H, Nakata M, Parmila K, Nakae J, Yada T. Mol Metab. 2017 Feb 17;6(5):428-439.


16.

Soy Protein Isolate Suppresses Lipodystrophy-induced Hepatic Lipid Accumulation in Model Mice. Nagao K, Matsumoto A, Kai S, Kayashima T, Yanagita T. J Oleo Sci. 2017 Feb 1;66(2):161-169.


17.

A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult.

Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J J Nutr Biochem. 2017 Feb;40:44-52.


18.

Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Saito N, Kimura S, Miyamoto T, Fukushima S, Amagasa M, Shimamoto Y, Nishioka C, Okamoto S, Toda C, Washio K, Asano A, Miyoshi I, Takahashi E, Kitamura H. Biochem Biophys Rep. 2017 Jan 26;9:322-329.


19.

Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y, Matsumoto M, Motoyama T, Tachibana N, Kaneko S, Kohno M, Inoue H. J Nutr. 2017 Jan;147(1):52-60.


20.

BCL11B gene heterozygosity causes weight loss accompanied by increased energy consumption, but not defective adipogenesis, in mice Jun Inoue, Yusuke Ihara, Daisuke Tsukamoto, Keisuke Yasumoto, Tsutomu Hashidume, Kenya Kamimura, Shigeki Hirano, Makoto Shimizu, Ryo Kominami & Ryuichiro Sato Bioscience, Biotechnology, and Biochemistry, Vol.81, 2017,Issue 5, p922-930


21.

Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Natsuko Saitoa,Shunsuke Kimurac,Tomomi Miyamotod,Sanae Fukushimae,Misato Amagasaa,Yoshinori Shimamotob, Chieko Nishiokae,Shiki Okamotof,Chitoku Todag,Kohei Washioa,Atsushi Asanoh,Ichiro Miyoshid,Eiki Takahashie,Hiroshi Kitamura Biochemistry and Biophysics ReportsVolume 9, March 2017, Pages 322-329


22.

Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. Neuropharmacology. 2017 Feb;113(Pt A):467-479


23.

Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high fat diet and ovariectomy in mice. Ohtake K, Ehara N, Chiba H, Nakano G, Sonoda K, Ito J, Uchida H, Kobayashi J. Am J Physiol Endocrinol Metab. 2017 Feb 14


24.

A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult. Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J. J Nutr Biochem. 2017 Feb;40:44-52.


25.

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High Fat Diet-Fed Mice. Joo E, Harada N, Yamane S, Fukushima T, Taura D, Iwasaki K, Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N. Diabetes. 2017 Jan 17.


26.

BCL11B gene heterozygosity causes weight loss accompanied by increased energy consumption, but not defective adipogenesis, in mice. Inoue J, Ihara Y, Tsukamoto D, Yasumoto K, Hashidume T, Kamimura K, Hirano S, Shimizu M, Kominami R, Sato R. Biosci Biotechnol Biochem. 2017 Jan 9:1-9.


27.

Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice. Satoko Shimazu-Kuwahara,Norio Harada,Shunsuke Yamane,Erina Joo,Akiko Sankoda,Timothy J. Kieffer,Nobuya Inagaki. Molecular Metabolism,Available online 19 January 2017


28.

Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y, Matsumoto M, Motoyama T, Tachibana N, Kaneko S, Kohno M, Inoue H. J Nutr. 2017 Jan;147(1):52-60.


29.

Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Chung SI, Ryu SN, Kang MY. Nutrients. 2016 Oct 21;8(10).


30.

Angiopoietin-like peptide 4 regulates insulin secretion and islet morphology. Kim HK, Kwon O, Park KH, Lee KJ, Youn BS, Kim SW, Kim MS. Biochem Biophys Res Commun. 2017 Feb 7


31.

Ubc13 haploinsufficiency protects against age-related insulin resistance and high-fat diet-induced obesity. Joo E, Fukushima T, Harada N, Reed JC, Matsuzawa SI, Inagaki N. Sci Rep. 2016 Oct 31;6:35983.


32.

Procyanidin Promotes Translocation of Glucose Transporter 4 in Muscle of Mice through Activation of Insulin and AMPK Signaling Pathways. Yamashita Y, Wang L, Nanba F, Ito C, Toda T, Ashida H. PLoS One. 2016 Sep 6;11(9):e0161704


33.

Oxytocin Protects against Stress-Induced Cell Death in Murine Pancreatic β-Cells. Watanabe S, Wei FY, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. Sci Rep. 2016 May 4;6:25185.


34.

Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Honma K, Hikosaka M, Mochizuki K, Goda T. Metabolism. 2016 Apr;65(4):482-91


35.

Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Miyazaki T, Shirakami Y, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M. Oncotarget. 2016 Mar 1;7(9):10448-58.


36.

Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Nishimoto S, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Murata C, Kim-Kaneyama JR, Sato F, Bando M, Yagi S, Soeki T, Hayashi T, Imoto I, Sakaue H, Shimabukuro M, Sata M. Sci Adv. 2016 Mar 25;2(3):e1501332


37.

Fatty Liver and Insulin Resistance in the Liver-Specific Knockout Mice of Mitogen Inducible Gene-6. Park BK, Lee EA, Kim HY, Lee JC, Kim KS, Jeong WH, Kim KY, Ku BJ, Rhee SD. J Diabetes Res. 2016;2016:1632061


38.

Reactive sulfur species regulate tRNA methylthiolation and contribute to insulin secretion. Takahashi N, Wei FY, Watanabe S, Hirayama M, Ohuchi Y, Fujimura A, Kaitsuka T, Ishii I, Sawa T, Nakayama H, Akaike T, Tomizawa K.


39.

Effects of caloric restriction on O-GlcNAcylation, Ca(2+) signaling, and learning impairment in the hippocampus of ob/ob mice. Jeon BT, Heo RW, Jeong EA, Yi CO, Lee JY, Kim KE, Kim H, Roh GS. Neurobiol Aging. 2016 Aug;44:127-37.


40.

Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice. Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, Kim PS, Whon TW, Bae JW. Sci Rep. 2016 Jul 29;6:30887.


41.

Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects. Hashidume T, Kato A, Tanaka T, Miyoshi S, Itoh N, Nakata R, Inoue H, Oikawa A, Nakai Y, Shimizu M, Inoue J, Sato R. Sci Rep. 2016 Jun 17;6:28183.


42.

Paraventricular NUCB2/Nesfatin-1 Supports Oxytocin and Vasopressin Neurons to Control Feeding Behavior and Fluid Balance in Male Mice. Nakata M, Gantulga D, Santoso P, Zhang B, Masuda C, Mori M, Okada T, Yada T. Endocrinology. 2016 Jun;157(6):2322-32.


43.

Oxytocin Protects against Stress-Induced Cell Death in Murine Pancreatic β-Cells. Watanabe S, Wei FY, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. Sci Rep. 2016 May 4;6:25185.


44.

Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Honma K, Hikosaka M, Mochizuki K, Goda T. Metabolism. 2016 Apr;65(4):482-91.


45.

Protective effect of vitamin E against alloxan-induced mouse hyperglycemia. Takemoto K, Doi W, Masuoka N. Biochim Biophys Acta. 2016 Apr;1862(4):647-50.


46.

Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Harada N, Hanaoka R, Horiuchi H, Kitakaze T, Mitani T, Inui H, Yamaji R. Sci Rep. 2016 Mar 10;6:23001.


47.

Pharmacological Inhibition of Monoacylglycerol O-Acyltransferase 2 Improves Hyperlipidemia, Obesity, and Diabetes by Change in Intestinal Fat Utilization. Take K, Mochida T, Maki T, Satomi Y, Hirayama M, Nakakariya M, Amano N, Adachi R, Sato K, Kitazaki T, Takekawa S. PLoS One. 2016 Mar 3;11(3):e0150976.


48.

GADD34-deficient mice develop obesity, nonalcoholic fatty liver disease, hepatic carcinoma and insulin resistance Naomi Nishio and Ken-ichi Isobe Sci Rep. 2015; 5: 13519.


49.

Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito Lixin Wang, Sachiko Mogami, Seiichi Yakabi, Hiroshi Karasawa, Chihiro Yamada, Koji Yakabi, Tomohisa Hattori, and Yvette Taché PLoS One. 2015; 10(9): e0139325.


50.

Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice Yamamoto J, Tadaishi M, Yamane T, Oishi Y, Shimizu M, Kobayashi-Hattoria K. Bioscience, Biotechnology, and Biochemistry, Vol.79(7), 2015.


51.

Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway. Horiba T, Katsukawa M, Mita M, Sato R. Biochem Biophys Res Commun. Vol.463(4), p846-52, Aug. 2015.


52.

Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. Kim HY, Park SY, Lee MH, Rho JH, Oh YJ, Jung HU, Yoo SH, Jeong NY, Lee HJ, Suh S, Seo SY, Cheong J, Jeong JS, Yoo YH. J Hepatol. Vol.63(2), p477-85, Aug 2015.


53.

Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo. Kushibiki T, Okawa S, Hirasawa T, Ishihara M. Gene Ther. Vol.22(7), p553-9, Jul 2015.


54.

Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice. Ohno T, Shimizu M, Shirakami Y, Miyazaki T, Ideta T, Kochi T, Kubota M, Sakai H, Tanaka T, Moriwaki H. Hepatol Res. Jul 2015


55.

Effects of liquid konjac on parameters related to obesity in diet-induced obese mice. Aoe S, Kudo H, Sakurai S. Biosci Biotechnol Biochem. Vol.79(7), p1141-6, Jul 2015.


56.

Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB. FASEB J. Vol.29(6), p2397-411, Jun 2015.


57.

PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells. Kim JK, Lim Y, Lee JO, Lee YS, Won NH, Kim H, Kim HS. J Mol Endocrinol.Vol.54(3), p315-24, Jun 2015.


58.

Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis. Kurano M, Hara M, Satoh H, Tsukamoto K. Metabolism. Vol.64(5), p588-96, May 2015.


59.

Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. Kobori M, Takahashi Y, Akimoto Y, Sakurai M, Matsunaga I, Nishimuro H, Ippoushi K, Oike H, Ohnishi-Kameyama M. Journal of Functional Foods, Vol.15, p551–560, May 2015.


60.

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice. Sun X, Yamasaki M, Katsube T, Shiwaku K. Nutr Res Pract. Vol.9(2), p137-43, Apr 2015.


61.

Insulin Release from the Beta Cells in Acatalasemic Mice Is Highly Susceptible to Alloxan-Induced Oxidative Stress. Kazunori Takemoto, Wakana Doi, Ken Kataoka, Kohji Ishihara, Da-Hong Wang., Hitoshi Sugiyama, Noriyoshi Masuoka. JDM, Vol.5 No.2, May 2015


62.

Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N. J Appl Toxicol. Mar 2015 .


63.

Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets. Kanno A, Asahara S, Masuda K, Matsuda T, Kimura-Koyanagi M, Seino S, Ogawa W, Kido Y.  Biochem Biophys Res Commun. Vol.13;458(3), p681-6. Mar 2015.


64.

Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo. Kushibiki T, Okawa S, Hirasawa T, Ishihara M. Gene Ther. Mar 2015.


65.

Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets. Kanno A, Asahara S, Masuda K, Matsuda T, Kimura-Koyanagi M, Seino S, Ogawa W, Kido Y. Biochem Biophys Res Commun. Vol.458(3), p681-6, Mar 2015.


66.

Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. Quan X, Nguyen TT, Choi SK, Xu S, Das R, Cha SK, Kim N, Han J, Wiederkehr A, Wollheim CB, Park KS. J Biol Chem. Vol.290(7), p4086-96, Feb 2015.


67.

Endogenous Interleukin 18 Suppresses Hyperglycemia and Hyperinsulinemia during the Acute Phase of Endotoxemia in Mice. Yamashita H, Aoyama-Ishikawa M, Takahara M, Yamauchi C, Inoue T, Miyoshi M, Maeshige N, Usami M, Nakao A, Kotani J. Surg Infect (Larchmt). 2015 Feb;16(1):90-6.


68.

 Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice. Junpei Yamamoto, Miki Tadaishi, Takumi Yamane, Yuichi Oishi, Makoto Shimizu & Kazuo Kobayashi-Hattoria. Bioscience, Biotechnology, and Biochemistry, Published online: 10 Feb 2015


69.

Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. Hwang I, Park YJ, Kim YR1, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB. FASEB J. Feb 2015.


70.

Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N. J Appl Toxicol. Mar 2015.


71.

Ashitaba (Angelica keiskei) extract prevents adiposity in high-fat diet-fed C57BL/6 mice. Zhang T, Yamashita Y, Yasuda M, Yamamoto N, Ashida H. Food Funct. Vol.6(1), p134-144, Jan 2015.


72.

Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKAy mice Ohtake K, Nakano G, Ehara N, Sonoda K, Ito J, Uchida H, Kobayashi J. Nitric Oxide, Vol.44, p31–38, Jan 2015.


73.

Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. Pichiah PT, Cha YS. J Sci Food Agric. Dec 2014.


74.

Salacia reticulata has therapeutic effects on obesity. Shimada T, Nakayama Y, Harasawa Y, Matsui H, Kobayashi H, Sai Y, Miyamoto K, Tomatsu S, Aburada M. J Nat Med. Vol.68(4), p668-676, Oct 2014.Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. Pichiah PT1, Cha YS. J Sci Food Agric. Dec 2014.


75.

Ghrelin administered spinally increases the blood glucose level in mice. Sim Y-B., Park S-H., Kim S-S., Kim C-H., Kim S-J., Lim S-M., Jung J-S., Suh H-W. Peptides, Vol.54, p162-165, Apr 2014.

76.

Chronic exposure to valproic acid promotes insulin release, reduces KATP channel current and does not affect Ca2+ signaling in mouse islets. Manaka K., Nakata M., Shimomura K., Rita RS., Maejima Y., Yoshida M., Dezaki K., Kakei M., Yada T. The Journal of Physiological Sciences, Vol.64(1), p77-83, Jan 2014.


77.

Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet. Yanagisawa R., Koike E., Win-Shwe TT., Yamamoto M. and Takano H. ENVIRONMENTAL HEALTH PERSPECTIVES, Jan 2014.


78.

Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice. Moon Y-J., Baik S-H. and Cha Y-S. Nutrients, Vol.6(3), p1016-1028, 2014.


79.

Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser1177/Thr497 of endothelial nitric oxide synthase in diabetic mice. Matsumoto S., Shimabukuro M., Fukuda D., Soeki T., Yamakawa K., Masuzaki H. and Sata M. Cardiovascular Diabetology, 13:30, 2014.


80.

Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. T.Tsuduki, I.Kikuchi, T.Kimura, K.Nakagawa, T.Miyazawa. Food Chemistry, Vol.139(1-4), p16-23, Aug 2013.


81.

Chronic treatment with novel GPR40 agonists improve whole-body glucose metabolism based on the glucose-dependent insulin secretion. H.Tanaka, S.Yoshida, H.Oshima, H.Minoura, K.Negoro, T.Yamazaki, S.Sakuda, F.Iwasaki, T.Matsui and M. Shibasaki. JPET, Jul 2013.


82.

Contribution of insulin signaling to the regulation of pancreatic beta-cell mass during the catch-up growth period in a low birth weight mouse model. Y.Yoshida, M.Fuchita, M.Kimura-Koyanagi, A.Kanno, T.Matsuda, S.Asahara, N.Hashimoto, T.Isagawa, W.Ogawa, H.Aburatani, T.Noda, S.Seino, M.Kasuga, Y.Kido. Diabetology International, Jul 2013.


83.

Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. T.Naito, A.Kuma and N.Mizushima. The Journal of Biological Chemistry, Jun 2013.


84.

Apelin Inhibits Diet-Induced Obesity by Enhancing Lymphatic and Blood Vessel Integrity. M.Sawane, K.Kajiya, H.Kidoya, M.Takagi, F.Muramatsu and N.Takakura. Diabetes, Vol.62(6), p1970-1980, Jun 2013.


85.

Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. S.Asahara, Y.Shibutani, K.Teruyama, H.Y.Inoue, Y.Kawada, H.Etoh, T.Matsuda, M.Kimura-Koyanagi, N.Hashimoto, M.Sakahara, W.Fujimoto, H.Takahashi, S.Ueda, T.Hosooka, T.Satoh, H.Inoue, M.Matsumoto, A.Aiba, M.Kasuga, Y.Kido. Diabetologia, Vol.56(5), p1088-1097, May 2013.


86.

Effects of hydrophilic statins on renal tubular lipid accumulation in diet-induced obese mice. K.Gotoh, T.Masaki, S.Chiba, H.Ando, K.Fujiwara, T.Shimasaki, Y.Tawara, I.Toyooka, K.Shiraishi, K.Mitsutomi, M.Anai, E.Itateyama, J.Hiraoka, K.Aoki, N.Fukunaga, T.Nawata, T.Kakuma. Obesity Research & Clinical Practice, May 2013.


87.

Amyloid-β Induces Hepatic Insulin Resistance In Vivo via JAK2. Y.Zhang, B.Zhou, B.Deng, F.Zhang, J.Wu, Y.Wang, Y.Le and Q.Zhai. Diabetes, Vol.62(4), p1159-1166, Apr 2013.


88.

Histidine augments the suppression of hepatic glucose production by central insulin action

Kimura K, Nakamura Y, Inaba Y, Matsumoto M, Kido Y, Asahara S, Matsuda T, Watanabe H, Maeda A, Inagaki F, Mukai C, Takeda K, Akira S, Ota T, Nakabayashi H, Kaneko S, Kasuga M and Inoue H.

Diabetes, Vol.62(4), p1003-1004, Apr 2013


89.

Improved transplantation outcome through delivery of DNA encoding secretion signal peptide-linked glucagon-like peptide-1 into mouse islets

Chae H Y, Lee M, Hwang H J, Kim H A, Kang J G, Kim C S, Lee S J, Ihm S-H.

Transplant International, Vol.26(4), p443-452, Apr 2013.


90.

Histidine augments the suppression of hepatic glucose production by central insulin action

K.Kimura, Y.Nakamura, Y.Inaba, M.Matsumoto, Y.Kido, S.Asahara, T.Matsuda, H.Watanabe, A.Maeda, F.Inagaki, C.Mukai, K.Takeda, S.Akira, T.Ota, H.Nakabayashi, S.Kaneko, M.Kasuga and H.Inoue. Diabetes, Mar 2013.


91.

Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice without adverse side effects. Bak E-J, Kim J-H, Lee D-E, Choi Y-H, Kim J M, Woo G-H, Cha J-H, Yoo Y-J. Clinical Nutrition, Available online 26, Mar 2013.


92.

Extracellular Signal-Regulated Kinase in the Ventromedial Hypothalamus Mediates Leptin-Induced Glucose Uptake in Red-Type Skeletal Muscle. Toda C, Shiuchi T, Kageyama H, Okamoto S, Coutinho E A, Sato T, Okamatsu-Ogura Y, Yokota S, Takagi K, Tang L, Saito K, Shioda S and Minokoshi Y. Diabetes Mar 2013.


93.

Effect of vitamin E on alloxan-induced mouse diabetes. Kamimura W, Doi W, Takemoto K, Ishihara K, Wang D-H, Sugiyama H, Oda S, Masuoka N. Clinical Biochemistry, Mar 2013.


94.

Ablation of Rnf213 retards progression of diabetes in the Akita mouse. Kobayashi H, Yamazaki S, Takashima S, Liu W, Okuda H, Yan J, Fujii Y, Hitomi T, Harada K H, Habu T, Koizumi A. Biochemical and Biophysical Research Communications, Vol.432(3), p519-525, Mar 2013.

 

95.

Hypothalamic ATF3 is involved in regulating glucose and energy metabolism in mice. Lee Y-S, Sasaki T, Kobayashi M, Kikuchi O, Kim H-J, Yokota-Hashimoto H, Shimpuku M, Susanti V-Y, Ido-Kitamura Y, Kimura K, Inoue H, Tanaka-Okamoto M, Ishizaki H, Miyoshi J, Ohya S, Tanaka Y, Kitajima S, Kitamura T. Diabetologia, Mar 2013.


96.

Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. S. Asahara, Y. Shibutani, K. Teruyama, H. Y. Inoue, Y. Kawada, H. Etoh, T. Matsuda, M. Kimura-Koyanagi, N. Hashimoto, M. Sakahara, W. Fujimoto, H. Takahashi, S. Ueda, T. Hosooka, T. Satoh, H. Inoue, M. Matsumoto, A. Aiba, M. Kasuga, Y. Kido. Diabetologia, Feb 2013.


97.

Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Miura K, Yang L, Rooijen N, Brenner D A, Ohnishi H, Seki E. Hepatology, Vol.57(2), p577-589, Feb 2013.


98.

Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in GIP Hypersecretion in High Fat Diet-induced Obesity*. K.Suzuki, N.Harada, S.Yamane, Y.Nakamura, K.Sasaki, D.Nasteska, E.Joo, K.Shibue, T.Harada, A.Hamasaki, K.Toyoda, K.Nagashima and N.Inagaki. The Journal of Biological Chemistry, Vol.288, p1929-1938, Jan 2013.


99.

Improved hypothermic short-term storage of isolated mouse islets by adding serum to preservation solutions. Yasuko Kimura, Teru Okitsu, Liu Xibao, Hiroki Teramae, Atsuhito Okonogi, Kentaro Toyoda, Shinji Uemoto and Masanori Fukushima. Islets, Vol.5(1), Jan 2013.


100.

Anti-diabetic effect of amorphastilbol through PPARα/γ dual activation in db/db mice. Lee W, Ham J, Kwon H C, Kim Y K, Kim S-N. Biochemical and Biophysical Research Communications, Jan 2013.

101.

Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in GIP Hypersecretion in High Fat Diet-induced Obesity. Suzuki K, Harada N, Yamane S, Nakamura Y, Sasaki K, Nasteska D, Joo E, Shibue K, Harada T, Hamasaki A,Toyoda K, Nagashima K and Inagaki N. The Journal of Biological Chemistry, Vol.288, p1929-1938, Jan 2013.


102.

Apelin inhibits diet-induced obesity by enhancing lymphatic and blood vessel integrity. Sawane M, Kajiya K, Kidoya H, Takagi M, Muramatsu F and Takakura N. Diabetes, 2013.


103.

Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high fat diet. Kim I, Kim H-R, Kim J-H, Om A-S. Journal of the Science of Food and Agriculture, 2013.


104.

Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Tsuduki T, Kikuchi I, Kimura T, Nakagawa K, Miyazawa T. Food Chemistry, Vol.139(14), p16-23, 2013.


105.

Effect of Mukitake mushroom (Panellus serotinus) on the pathogenesis of lipid abnormalities in obese, diabetic ob/ob mice. Inoue N, Inafuku M, Shirouchi B, Nagao K and Yanagita T. Lipids in Health and Disease, Vol.12(18), 2013.


106.

Pax6 Directly Down-Regulates Pcsk1n Expression Thereby Regulating PC1/3 Dependent Proinsulin Processing. Liu T., Zhao Y., Tang N., Feng R., Yang X., Lu N., Wen J., Li L. PLOS ONE, Vol.7(10), Oct 2012.


107.

Anti-Diabetic Atherosclerosis Effect of Prunella vulgaris in db/db Mice with Type 2 Diabetes. Hwang S M, Kim J K, Lee Y J, Yoon J J, Lee S M, Kang D G, Lee H S. Am J Chin Med, Vol.40, 2012.


108.

Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Y. Yamashita., M. Okabe., M. Natsume., H. Ashida. Archives of Biochemistry and Biophysics, Available online 23 March 2012, In Press


109.

The Action of D-Dopachrome Tautomerase as an Adipokine in Adipocyte Lipid Metabolism. T. Iwata., H. Taniguchi., M. Kuwajima., T. Taniguchi., Y. Okuda., A. Sukeno., K. Ishimoto., N. Mizusawa., K. Yoshimoto. PLos ONE, Vol. 7(3), Mar 2012.


110.

Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice. Y. Yamada.,.A. Muraki.,.M. Oie.,.N. Kanegawa.,.A. Oda., Y. Sawashi., K. Kaneko., M. Yoshikawa., T. Goto., N. Takahashi., T. Kawada., and K. Ohinata. American Physiological Society, Vol.302, No.4, E433-E440, 2012.


111.

Effects of Gametophytes of Ecklonia Kurome on the Levels of Glucose and Triacylglycerol in db/db, Prediabetic C57BL/6J and IFN-γ KO Mice. F. Dwiranti., M. Hiraoka., T. Taguchi., Y. Konishi., M. Tominaga., A. Tominaga. Int J B 64 iomed Sci, Vol.8, No.1, Mar 2012.


112.

Endoplasmic Reticulum Stress Inhibits STAT3-Dependent Suppression of Hepatic Gluconeogenesis via Dephosphprylation and Deacetylation. K. Kimura., T. Yamada., M. Matsumoto., Y. Kido., T. Hosooka., S. Asahara., T. Matsuda., T. Ota., H. Watanabe., Y. Sai., K. Miyamoto., S. Kaneko., M. Kasuga., H. Inoue. Diabetes, Vol.61, No.1, p61-73, 2012.


113.

Melatonin protects mice with intermittent hypoxia from oxidative stress-induced pancreatic injury. LI G., HOU G., LU W., KANG J. Sleep and Biological Rhythms, Vol.9(2), p78-85, Apr 2011.


114.

A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. J, M, Cho., H, W, Jang., H, Cheon.,Y, T, Jeong., D-H, Kim., Y-M, Lim., S, Choi., E, Yang., C-Y, Shin., M, H, Son., S, H, Kim., H, Kim., M, Lee. Diabetes Research and Clinical Practice.Vol. 91(1), p72-79, 2011.


产品编号 产品名称 产品规格 产品等级 产品价格
634-01481 (AKRIN-011T)Lbis® Insulin-Mouse-T 96 tests

953-011-ART移液器吸头 1100μL-

产地类别 进口    

ART移液器吸头 1100μL
目录号 产品描述 包装
953-011 1000μL液体感应,无菌,带滤芯 96个/板,10板/箱

使用 Thermo Scientific™ 自动化吸头可提高 Qiagen™ 通用型移液系统的移液性能,每个吸头都会接受 15 项严格的质量控制以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头以及采用 ART™ 过滤器技术的吸头
生产期间在实际使用的工作站进行过批次检验
变异系数百分比(%CV)低

货号                                    描述                                                 价格

953-011 1000ul 液体感应,ART自封闭吸头,预灭菌,96支/盒,10盒/包装 82.67 
953-251  1100ul 液体感应吸头,预灭菌,96支/盒,10盒/包装 80.55 
953-252  1100ul 液体感应吸头,未灭菌,96支/盒,10盒/包装 76.25 
953-253  1100ul 液体感应吸头,Econopak ,未灭菌,96支/盒,50盒/包装 42.65 
953-021 1000ul 无色透明,ART自封闭吸头,预灭菌,96支/盒,10盒/包装 70.80 

搭扣盖式微量离心管, 搭扣盖式微量离心管 供应

  • 产品描述

多功能离心管由透明PP材料制成,非常适合样品的制备、离心和储存

· 方便单手开合

· 标准型和带安全锁扣式的可供选择,紧实防漏

· 盖子底部平滑,具磨砂书写面,方便样本标示

· 精确的模具刻度,便于估测容量

· 可承受最大离心速度为10000 g

· 可承受温度范围为 –86°C to 100°C

产品编号 描述 包装形式
84610-1822
84610-1816 *
84610-1817 *
84610-1815

0.5m L ,本色,带安全搭扣

1.5m L , 本色

1.5m L , 本色,带安全搭扣

2m L , 本色,圆底

1000只/塑料袋,10×1000只/箱

500只/塑料袋,10×500只/箱

500只/塑料袋,10×500只/箱

500只/塑料袋,20×500只/箱

*根据客户需求可提供其它颜色的盖子

951-011-ART移液器吸头 300μL-

产地类别 进口    

ART移液器吸头 300μL
目录号 产品描述 包装
951-011 250μL液体感应,无菌,带滤芯 96个/板,10板/箱

使用 Thermo Scientific™ 自动化吸头可提高 Qiagen™ 通用型移液系统的移液性能,每个吸头都会接受 15 项严格的质量控制以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头以及采用 ART™ 过滤器技术的吸头
生产期间在实际使用的工作站进行过批次检验
变异系数百分比(%CV)低

 

951-011 250ul 液体感应,ART自封闭吸头,预灭菌,96支/盒,10盒/包装 69.77 
951-251  300ul 液体感应吸头,预灭菌,96支/盒,10盒/包装 68.07 
951-252  300ul 液体感应吸头,未灭菌,96支/盒,10盒/包装 63.65 
951-253  300ul 液体感应吸头,Econopak ,未灭菌,96支/盒,50盒/包装 35.76 

PALLFLEX滤膜7204

PALLFLEX滤膜7204说明

说明:Tissuquartz过滤膜,石英,无粘合剂

PALLFLEX滤膜7204参数:

厚度:432um

重量:5.8mg/cm2

zui大操作温度:1093摄氏度

气溶胶截留:99.9%

订购信息 :

Tissuquartz 过滤膜, 2500 QAT-UP

货号

说明

包装

7200

2500 QAT-UP, 25 mm

100/pkg

7201

2500 QAT-UP, 37 mm

25/pkg

7202

2500 QAT-UP, 47 mm

25/pkg

7199

2500 QAT-UP, 54 mm

25/pkg

7191

2500 QAT-UP, 60 mm

25/pkg

7197

2500 QAT-UP, 63.5 mm

25/pkg

7196

2500 QAT-UP, 64 mm

25/pkg

7205

2500 QAT-UP, 82.6 mm

25/pkg

7190

2500 QAT-UP, 83 mm

25/pkg

7206

2500 QAT-UP, 85 mm

25/pkg

7187

2500 QAT-UP, 87.5 mm

25/pkg

7203

2500 QAT-UP, 90 mm

25/pkg

7195

2500 QAT-UP, 100 mm

25/pkg

7207

2500 QAT-UP, 102 mm

25/pkg

7250

2500 QAT-UP, 110 mm

25/pkg

7249

2500 QAT-UP, 115 mm

25/pkg

7208

2500 QAT-UP, 125 mm

25/pkg

7251

2500 QAT-UP, 142 mm

25/pkg

7204

2500 QAT-UP, 8 x 10 in.

966-021-ART移液器吸头 300μL-

产地类别 进口    

ART移液器吸头 300μL
目录号 产品描述 包装
966-021 300μL无色,无菌,带滤芯 96个/盒,10盒/包装,5包装/箱

使用 Thermo Scientific™ 自动化吸头可提高 Eppendorf® epMotion® 自动移液系统的移液性能,本品以非无菌、无菌或无菌过滤的形式提供。 每个移液吸头都会接受 15 项严格的质量控制程序以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液器吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头和无菌过滤吸头
在实际使用吸头的工作站进行过验证
变异系数百分比低
无菌吸头经过认证,不含 RNA 酶、DNA 酶、 DNA、内毒素、初始污染菌和热原

货号                                        描述                                           价格

966-021 300ul 无色,无菌,带滤芯,96个/盒,10盒/包装,5包装/箱 108.16 
966-261 300ul 无色,无菌,96个/盒,10盒/包装,5包装/箱 51.98 
966-262 300ul 无色,未灭菌,96个/盒,10盒/包装,5包装/箱 44.47 
     

965-021-ART移液器吸头 50μL-

产地类别 进口    

ART移液器吸头 50μL
目录号 产品描述 包装
965-021 50μL无色,无菌,带滤芯 96个/盒,10盒/包装,5包装/箱

使用 Thermo Scientific™ 自动化吸头可提高 Eppendorf® epMotion® 自动移液系统的移液性能,本品以非无菌、无菌或无菌过滤的形式提供。 每个移液吸头都会接受 15 项严格的质量控制程序以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液器吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头和无菌过滤吸头
在实际使用吸头的工作站进行过验证
变异系数百分比低
无菌吸头经过认证,不含 RNA 酶、DNA 酶、 DNA、内毒素、初始污染菌和热原

 

965-021 107.99  50ul 无色,无菌,带滤芯,96个/盒,10盒/包装,5包装/箱
965-261 51.98  50ul 无色,无菌,96个/盒,10盒/包装,5包装/箱
965-262 52.46  50ul 无色,未灭菌,96个/盒,10盒/包装,5包装/箱

PM2.5滤膜7592-104

PM2.5滤膜7592-104

Whatman环境空气PM2.5重量法采样滤膜是一张高纯度、超薄、重量极轻的标准滤膜,对0.3um标准粒子截留效率大于99.7%。该滤膜被固定在化学惰性的聚丙烯或PMP支撑环中,每一张滤膜环上均已顺序编码,方便数据读取和存档。Whatman采样滤膜的优势在于:重量更轻,有利于精确测定颗粒物浓度和手工参比;热稳定性设计,避免膜的卷曲效应,兼容自动化的操作;化学本底zui低,有利于进行准确源解析。

Whatman PM2.5 PTFE膜是在超洁净车间制造,膜材为高纯聚四氟乙烯,无任何粘结剂或添加剂,本底极纯净。这种耐受化学腐蚀、低化学本底的采样膜,确保了高灵敏度、无干扰的检测结果。

统一声明

PM2.5滤膜按 EPA PM 2.5 方法的40 CFR Part 50要求生产,严格符合环境监测总站的关键性能指标要求,如标准粒子截留效率、标称孔径、重量稳定性、压力降值、跌落试验等,同时提供非常洁净的化学本底,满足苛刻的源解析实验需求。

特殊要求

    • XRF痕量金属本底分析
    • 无肉眼可见缺陷,如膜不均匀、闪纹、小孔、变色等
    • 碱性本底
    • 重量稳定性
    • 压力降值
    • 支撑圆环上顺序编码

PM2.5滤膜7592-104技术参数:

整包数量: 50 片
zui高碱性: 25ueq/g/滤膜
测试方法:详见第2.12节 EPA/600/R-94/038b
直径: 46.2mm
材质: 聚四氟乙烯(PTFE)
zui小颗粒保留率(0.3mum): 99.7%
测试方法:ASTM D 2986-95a
孔径: 2μm
支撑环:
支撑环材质: 聚丙烯(PP)
支撑环宽度: 3.68mm±0.00至0.51 
测试方法:模板
支撑环总厚度: 0.38mm±0.04

 

10404131-GE whatman醋酸纤维素CA膜OE66 0.2um142mm-醋酸纤维素膜

品牌 其他品牌 货号 10404131
供货周期 现货 应用领域 医疗/卫生,环保/水工业,生物产业,综合

GE whatman醋酸纤维素CA膜OE66 0.2um142mm,由纯醋酸纤维素制成,Z合适制备生物样品、临床分析、无菌检验及闪烁计数测试。

GE whatman醋酸纤维素CA膜OE66 0.2um142mm

Whatman醋酸纤维素膜由纯醋酸纤维素制成,zui合适制备生物样品、临床分析、无菌检验及闪烁计数测试。

特点和优势:

  • 醋酸纤维素的蛋白吸附力极低
  • 天然亲水性,适于水溶液和酒精
  • 较普通醋纤膜的溶剂抗性更高,尤其是对低分子醇类
  • 提高了热稳定性和物理强度,可耐受180℃高温
  • 适用于干热灭菌、射线灭菌和环氧乙烷灭菌、高温高压灭菌等方式

GE whatman醋酸纤维素CA膜OE66 0.2um142mm

技术参数-醋酸纤维素膜

膜型号 孔径(um) 厚度(um) 水流速△p=0.9bar(s/100ml/12.5cm平方) 起泡点(psi) 起泡点(bar)
OE66 0.2 115 26 58 4
OE67 0.45 115 12 44.95 3.1
ST68 0.8 140 16 21.75 1.5
ST69 1.2 140 12 13.05 0.9

订购信息:

10404106 OE66 0.2uM 25MM 100/PK
10404112 OE66 0.2uM 47MM 100/PK
10404114 OE66 0.2uM 50MM 100/PK
10404126 OE66 0.2uM 110MM 50/PK
10404131 OE66 0.2uM 142MM 25/PK
10404139 OE66 0.2uM 293MM 25/PK
10404170 OE66 ST 0.2uM 47MM 100/PK
10404180 OE66 0.2uM 300x600MM 5/PK

是国内专业的实验过滤材料提供商,致力于将质量、可靠性和操作性突出的产品带给每一位客户。
公司产品包括各类滤纸、滤膜、滤器以及辅助器材,主营定性滤纸,定量滤纸,层析纸,玻璃微纤维滤纸;石英滤膜,无机膜,聚碳酸酯膜(PC),聚四氟乙烯(PTFE)滤膜,聚偏二氟乙烯(PVDF)膜,尼龙(Nylon)膜,聚醚砜(PES)膜,醋酸纤维素(CA)膜,硝酸纤维素(NC)膜,混合纤维素膜(MCE);针头式滤器,囊式滤器,可换膜过滤器,超滤离心管等。广泛应用于生命科学,农业,药物医学,化工,食品,水质分析,环境监测等各个领域,公司与各全球知名厂家建立了稳定的合作关系,确保正品的同时更可以满足客户对于便捷和实惠的需求。

WHATMAN PM2.5滤膜

WHATMAN PM2.5滤膜在一个干净的工作间里制成,这些抗化学腐蚀、低背景的膜确保了高灵敏度、无干扰的检测结果。膜直径46.2mm,不含结合物或黏合剂。
WHATMAN PM2.5滤膜 EPA PM 2.5 方法的40 CFR Part 50的要求下生产出来的,生产商必须按照以下列出的测试来做。任何生产, 销售或提供销售专用于PM 2.5 参照方法的滤膜商家, 必须证明每批售出的滤膜都有一定数量(0.1%或zui少10个)经过下列指定测试并且90%以上符合每一个测试项目:
?松散、表面颗粒污染(loose, surface particle contamination.(Drop Test-Weight Loss Stability)?温度稳定性(温度—Weight Loss Stability)

需要符合的测试项目:

?滤膜类型
?滤膜直径
?滤膜厚度
?滤膜孔径
?支撑环的宽度
?支撑环的厚度(总厚度)
?zui高压力点(干净滤器)
?zui高湿气点
?收集效率
?碱性
?特殊要求
包括XRF痕量金属分析和肉眼视觉引起的缺陷检查,比如:针孔、支撑环分离、渣滓或闪纹、松动、  变色、滤膜不均匀或其他明显的滤膜缺陷。

Whatman据此声明,每批生产及销售的专用于PM2.5参照方法的滤膜,均符合EPA标准。

 

948-261-ART移液器吸头 50μL 384孔-

产地类别 进口    

ART移液器吸头 50μL 384孔
目录号 产品描述 包装
948-261 50μL无色,无菌 384个/盒,10盒/包装,5包装/箱

使用 Thermo Scientific™ 自动化吸头可提高 Eppendorf® epMotion® 自动移液系统的移液性能,本品以非无菌、无菌或无菌过滤的形式提供。 每个移液吸头都会接受 15 项严格的质量控制程序以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液器吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头和无菌过滤吸头
在实际使用吸头的工作站进行过验证
变异系数百分比低
无菌吸头经过认证,不含 RNA 酶、DNA 酶、 DNA、内毒素、初始污染菌和热原

货号                                       描述                                   价格

948-261 50UL 无色透明吸头,预灭菌,384支/架,10架/包装,5包装/箱 60.28 
948-262 50UL 无色透明吸头,未灭菌,384支/架,10架/包装,5包装/箱 59.97 

946-261-ART移液器吸头 10μL 384孔-

产地类别 进口    

ART移液器吸头 10μL 384孔
目录号 产品描述 包装
946-261 10μL无色,无菌 384个/盒,10盒/包装,5包装/箱

使用 Thermo Scientific™ 自动化吸头可提高 Eppendorf® epMotion® 自动移液系统的移液性能,本品以非无菌、无菌或无菌过滤的形式提供。 每个移液吸头都会接受 15 项严格的质量控制程序以保证*性,从而凭借吸头出色的垂直度和低变异系数,提供精准的移液性能。 移液器吸头已在实际使用的工作站上进行了检验,而且经认证,无菌移液器吸头不含 RNA 酶、DNA 酶、DNA、内毒素、初始污染菌和热原。描述
可提供非无菌吸头、无菌吸头和无菌过滤吸头
在实际使用吸头的工作站进行过验证
变异系数百分比低
无菌吸头经过认证,不含 RNA 酶、DNA 酶、 DNA、内毒素、初始污染菌和热原

货号                                      描述                                          价格

946-261 10ul 无色透明吸头,预灭菌,384支/架,10架/包装,5包装/箱 57.78 
946-262 10ul 无色透明吸头,未灭菌,384支/架,10架/包装,5包装/箱 57.45 

黑色聚碳酸酯膜

黑色聚碳酸酯膜110656与落射荧光显微技术结合,可以在30分钟内快速计数存活或死亡微生物个体和颗粒。传统的方法要求培养24小时以上,使用黑色径迹蚀刻膜结合落射荧光显微技术可以很快地进行直接检测。

黑色聚碳酸酯膜110656特点:
·黑色聚碳酸酯径迹蚀刻膜用Irgalan Black燃料染黑
·平整、光滑的表面确保微生物和颗粒的表面捕获
·极低的非特异性吸附

110656应用:
·饮用水
·超纯水
·食品和乳制品
·酒类和饮料
·临床
·电子显微

,是一家专注于生命科学和生物技术领域的企业,主要从事分子生物学、细胞生物学、免疫学、蛋白组学等实验研究的相关试剂、耗材及仪器的销售,致力于在各个领域内向用户提供质量优质的产品,同时也为客户提供相关的实验服务。 公司主要代理Millipore、Bio-rad、WHATMAN、PALL等国际知名品牌,和供应商有着良好的合作关系,同时致力于不断完善自身的供应体系,以期能更好的服务于国内的科研用户。