和光纯药的细胞因子

和光纯药的细胞因子

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

和光纯药的细胞因子和光纯药的细胞因子

种类丰富


  提供众多种类人,小鼠,大鼠的重组细胞因子和生长因子等,具体请参阅产品列表。

  各种细胞因子的生物活性等产品详情、大包装的价格、货期请咨询。

 


◆产品介绍


bFGF Solution, MF

  bFGF【成纤维细胞生长因子(碱性)】是人类ES / iPS细胞的维持培养所必需的因子。也用于心肌细胞等诱导分化。本产品是无菌溶液,可直接在培养基中添加使用。同时,已注册原药等登记台账(Master File:MF)。

  bFGF广泛存在于胎儿期和成人体内的各种组织。能促进培养血管内皮细胞的增殖、迁移、蛋白酶的生产、管腔形成等。在体内具有血管生成作用。除了作为血管生成因子外,也有研究表明其在骨和软骨形成、中枢神经系统等方面具有各种生物学作用。

● 内毒素:≦10EU/mg

● 活性:≧500,000IU/mg

● 表达细胞:E. coli

● 形状:溶液型 无载体Carrier free

DKK-1, Human, recombinant

  DKK-1是Wnt/β-catenin信号通路拮抗剂。由形成低密度脂蛋白(LDL)受体相关蛋白5(LRP5)和LRP6形成复合体、抑制Wnt和Frizzled(Fz)的相互作用来抑制Wnt信号。本产品是成熟型的人DKK-1的235个氨基酸残基构成的糖蛋白。

● 内毒素≦0.1ng/μg

● 活性根据HCT116结肠癌细胞的增殖抑制功能来决定(DKK-1浓度为200ng/mL时能达到约40%的生长抑制)

● 表达细胞:HEK293 cells

● 形状:冻干品,无载体,Carrier free

LIF, Human, recombinant, Animal-derived-free

  本产品在培养和纯化的生产过程中不使用动物源性物质。

  LIF(Leukemia Inhibitory Factor)可抑制白血病细胞增殖,诱导分化巨噬细胞的因子。其他还具有参与神经元分化,骨形成,脂肪细胞的脂质运输,肾上腺皮质激素的产生等众多的功能。同时,LIF具有抑制小鼠ES细胞分化的作用,能维持ES细胞的未分化状态,被应用于细胞培养。本产品是由180个氨基酸残基构成的蛋白质。

 

● 内毒素≦0.01ng/μg
● 活性ED50:0.1ng/mL以下(根据人TF-1细胞的增殖刺激能力决定)

● 比活性>1×107units/mg)

● 表达细胞:E. coli

● 形状:冻干品,无载体,Carrier free

Sonic Hedgehog, Human, recombinant

  Sonic Hedgehog是Hedgehog Family 5种蛋白质中的其中一种,是分泌型的信号肽。在激活分化诱导活性的位点发现Sonic Hedgehog表达,发育过程中主要参与控制分化和形态的调控。

● 内毒素≦0.1ng/μg

● 活性ED50:0.8~1.0μg/mL(根据具有碱性磷酸酶产生的C3H/10T1/2(CCL-226)细胞的诱导能力决定)

● 表达细胞:E. coli

● 形状:冻干品,无载体,Carrier free

Bone Morphogenetic Protein 7;BMP-7(骨形态发生蛋白7,人,重组)

  骨形态发生蛋白7(Bone Morphogenetic Protein 7;BMP-7)是属于TGF-β超家族的生长因子。亦称为骨诱导因子-1 (Osteogenic Protein-1;OP-1)。与特定的骨诱导载体如胶原蛋白等一起用于骨缺损治疗的应用研究。BMP-7在发育组织中广泛表达,研究发现,BMP-7基因敲除小鼠的眼、肾脏、骨架形成等出现异常,出生后容易致死。

 

Interleukin-6;IL-6(可溶性白细胞介素-6受体α,人,重组)

  白细胞介素 – 6(Interleukin-6;IL-6)是一种与B细胞活化等相关的炎性细胞因子。IL-6与IL-6受体α(IL-6Rα)形成复合物并与gp130结合以在细胞内发出信号。本产品在细胞外区域,低浓度下可作为IL-6活性的激动剂。


大包装

  我们提供多款细胞因子大包装规格。使用量大的客户可考虑购买。同时,还有多种无动物源细胞因子产品。

  ※无动物源细胞因子是在生产过程中不使用动物来源的原料,利用E. coli (大肠杆菌)表达纯化的细胞因子。该产品可有效降低动物引起的病毒污染的风险。

相关资料

和光纯药的细胞因子 和光纯药的细胞因子
细胞因子▪生长因子
无动物细胞因子

产品编号 产品名称 产品规格 产品等级 产品价格
062-06661 bFGF Solution, MF 50μl
068-06663 bFGF Solution, MF 50μlx4
044-34231 DKK-1, Human, recombinant 10μg
040-34233 DKK-1, Human, recombinant 1mg
125-06661 LIF, Human, recombinant, Animal-derived-free 25μg
121-06663 LIF, Human, recombinant, Animal-derived-free 1mg
198-18341 Sonic Hedgehog, Human, recombinant 25μg
194-18343 Sonic Hedgehog, Human, recombinant 500μg
014-23961 Activin A, Human, recombinant, Animal-derived-free 10μg
018-23964 Activin A, Human, recombinant, Animal-derived-free 500μg
020-18851 Bone Morphogenetic Protein 4 (truncated),
 Human, recombinant, Animal-derived-free
10μg
024-18854 Bone Morphogenetic Protein 4 (truncated),
 Human, recombinant, Animal-derived-free
500μg
028-16451 Brain Derived Neurotrophic Factor, Human, recombinant,
 Animal-derived-free
10μg
022-16454 Brain Derived Neurotrophic Factor, Human, recombinant,
 Animal-derived-free
100μg
024-16453 Brain Derived Neurotrophic Factor, Human, recombinant,
 Animal-derived-free
1mg
059-07873 Epidermal Growth Factor, Human, recombinant, 
Animal-derived-free
100μg
053-07871 Epidermal Growth Factor, Human, recombinant, 
Animal-derived-free
500μg
067-05371 Fibroblast Growth Factor (acidic), Human, recombinant, Animal-derived-free 50μg
063-05373 Fibroblast Growth Factor (acidic), Human, recombinant, Animal-derived-free 1mg
064-05381 Fibroblast Growth Factor (basic), Human, recombinant 50μg
068-05384 Fibroblast Growth Factor (basic), Human, recombinant 100μg
060-05383 Fibroblast Growth Factor (basic), Human, recombinant 1mg
064-04541 Fibroblast Growth Factor (basic), Human, recombinant, Animal-derived-free 50μg
060-04543 Fibroblast Growth Factor (basic), Human, recombinant, Animal-derived-free 100μg
068-04544 Fibroblast Growth Factor (basic), Human, recombinant, Animal-derived-free 1mg
067-06231 Fibroblast Growth Factor 8, Human, recombinant, Animal-derived-free 25μg
061-06234 Fibroblast Growth Factor 8, Human, recombinant, Animal-derived-free 500μg
061-05391 Flt3 Ligand, Human, recombinant, Animal-derived-free 10μg
067-05393 Flt3 Ligand, Human, recombinant, Animal-derived-free 1mg
070-06261 Glial Cell Line-derived Neurotrophic Factor,
Human, recombinant,  Animal-derived-free
10μg
076-06263 Glial Cell Line-derived Neurotrophic Factor,
Human, recombinant,  Animal-derived-free
1mg
119-00661 Keratinocyte Growth Factorm Human, recombinant 10μg
116-00811 Keratinocyte Growth Factorm Human, recombinant,  Animal-derived-free 10μg
112-00813 Keratinocyte Growth Factorm Human, recombinant,  Animal-derived-free 1μg
146-09231 Neurotrophin-3, Human, recombinant, Animal-derived-free 10μg
142-09233 Neurotrophin-3, Human, recombinant, Animal-derived-free 1mg
197-15511 Stem Cell Factor, Human, recombinant, Animal-derived-free 10μg
191-15514 Stem Cell Factor, Human, recombinant, Animal-derived-free 250μg
193-15513 Stem Cell Factor, Human, recombinant, Animal-derived-free 1mg
207-19281 Transforming Growth Factor-β1, Human, recombinant 10μg
203-19283 Transforming Growth Factor-β1, Human, recombinant 1mg
207-19281 Transforming Growth Factor-β3, 
Human, recombinant,  Animal-derived-free
10μg
203-19283 Transforming Growth Factor-β3, 
Human, recombinant,  Animal-derived-free
1mg
203-15263 Tumor Necrosis Factor-α, Human, recombinant 10μg
207-15261 Tumor Necrosis Factor-α, Human, recombinant 50μg
201-15264 Tumor Necrosis Factor-α, Human, recombinant 1mg
207-17581 Thrombopoietin, Human, recombinant, Animal-derived-free 10μg
201-17584 Thrombopoietin, Human, recombinant, Animal-derived-free 500μg
203-17583 Thrombopoietin, Human, recombinant, Animal-derived-free 1mg
223-01311 Vascular Endothelial Growth Factor-A165, Human, recombinant 10μg
229-01313 Vascular Endothelial Growth Factor-A165, Human, recombinant 1mg
226-01781 Vascular Endothelial Growth Factor-A165,
 Human, recombinant,  Animal-derived-free
10μg
226-01786 Vascular Endothelial Growth Factor-A165,
 Human, recombinant,  Animal-derived-free
100μg
220-01784 Vascular Endothelial Growth Factor-A165,
 Human, recombinant,  Animal-derived-free
500μg
222-01783 Vascular Endothelial Growth Factor-A165,
 Human, recombinant,  Animal-derived-free
1mg
026-19171 Bone Morphogenetic Protein 7(BMP-7 / BMP7 / OP-1), Human, recombinant (expressed in CHO Cells) 骨形态生成蛋白7(BMP-7、BMP7 / OP-1),人,重组 (在CHO细胞中表达) 10 ug
092-07301 Interleukin-6 Receptor α soluble(sIL-6Ralpha), Human, recombinant 白细胞介素-6受体α可溶性(sIL-6ralpha),人,重组 20μg

普通MA板无菌箱ST-2型日本三博特sanplatec

普通MA板无菌箱ST-2型
产品编号: WEB0187 价格: 会员价:0元;市场价:0元 产品特点
产品规格

标准培植< ?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

手套1

规格(mm)

800(W)×550(D)×500(H)

材料

确认材料的耐药性 >> 耐药性检索

        普通MA板无菌箱ST-2型普通MA板无菌箱ST-2型产品特征

开口部大,使用方便。

箱门有锁,安全放心。

可选择客人需要的部件,更简便经济。(从无菌箱用部件里选择)

可订做特殊规格,详情请咨询。

 

图纸

请点击查看。

 

StemSure® hPSC去除剂【rBC2LCN-PE38】

StemSure® hPSC去除剂【rBC2LCN-PE38】

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

StemSure® hPSC去除剂【rBC2LCN-PE38】人ES/iPS细胞强力去除剂

StemSure® hPSC去除剂【rBC2LCN-PE38】


  rBC2LCN(AiLecS1) 是Burkholderiacenocepacia源凝聚素BC2L-C的N末端域在大肠杆菌表达的重组凝聚素。rBC2LCN对存在于人ES/iPS细胞表面的糖链具有非常高的特异性。

  本品是使绿脓杆菌源外毒素的位置域(38kDa)融合在rBC2LCN的N末端部分的重组蛋白。通过进入细胞内引起细胞死亡,选择性地去除人ES/iPS细胞。其活性比具有相同作用的rBC2LCN-PE23高强百倍。



◆特点


● 在分化诱导时能选择性地去除残留的人ES/iPS细胞

● 将本品添加至培养液中,即可简单高效地去除培养液中的人ES/iPS细胞

● 原料中不含动物源成分



数据


去除人iPS细胞

StemSure® hPSC去除剂【rBC2LCN-PE38】


1. StemSure® hPSC去除剂

  在人iPS细胞201B7细胞株和人成纤维细胞的培养液中添加StemSure® hPSC去除剂(终浓度0.1μg/ mL),培养48h,换液后再培养24h。结果显示,用StemSure® hPSC去除剂处理过的人iPS细胞基本上都已被去除(右上)。用同样的方法处理人成纤维细胞,则完全没有被去除(右下)。

产品列表


产品编号

产品名称

规格

容量

199-18511

195-18513

StemSure® hPSC去除液

【rBC2LCN-PE38】

StemSure® hPSC Remover

【rBC2LCN-PE38】

细胞培养用

100μL

100μL×5



◆相关产品


产品编号

产品名称

规格

容量

029-18061

025-18063

BC2LCN【AiLecS1】凝集素,重组,溶液

BC2LCN【AiLecS1】 Lectin, recombinant, Solution

糖链研究用

1mg

1mg×5

180-02991

186-02993

人iPS未分化标记染料rBC2LCN-FITC 

【AiLecS1-FITC】

rBC2LCN-FITC【AiLecS1-FITC】

Excitation 495nm, Emission 520nm

细胞染色用

100μL

100μL×5

186-03211

182-03213

人iPS未分化标记染料rBC2LCN-547

【AiLecS1-547】

rBC2LCN-547【AiLecS1-547】

Excitation 551nm, Emission 565nm

细胞染色用

100μL

100μL×5

185-03161

181-03163

人iPS未分化标记染料rBC2LCN-635 

【AiLecS1-635】

rBC2LCN-635【AiLecS1-635】

Excitation 634nm, Emission 654nm

细胞染色用

100μL

100μL×5

180-03231

186-03233

人ES/iPS细胞清除试剂

rBC2LCN-PE23

细胞培养用

100μL

100μL×5

299-78301

人类ES / iPS细胞监测试剂盒

Human ES/iPS Cell Monitoring Kit

再生医疗研究用

96 次

 

[1] Tateno, H., Onuma, Y., Ito, Y., Minoshima, F., Saito, S., Shimizu, M., Aiki, Y., 

   Asashima, M. and Hirabayashi, J. : Stem Cell Reports , 4 , 811( 2015).

[2] Tateno, H., Minoshima, F. and Saito, S. : Molecules , 22 , 1151( 2017)

产品编号 产品名称 产品规格 产品等级 产品价格

布氏漏斗,PP材质, 布氏漏斗 PP漏斗 塑料漏斗 供应

  • 产品描述

布氏漏斗是实验室中使用的一种塑料仪器用来使用真空或负压力抽吸进行过滤。
用于真空过滤,提取结晶等
多种规格可选:60-150mm

· 两件式,易于清洗

· 适配标准滤纸

产品编号 

顶部内径

(mm)

包装形式

84110-1001

84110-1002

84110-1003

84110-1004

84110-1005

60

75

95

130

150

1只/袋, 8只/箱

1只/袋, 6只/箱

1只/袋, 4只/箱

1只/袋, 4只/箱

1只/袋, 4只/箱

Phos-tag™ 质谱分析试剂盒

Phos-tag™ 质谱分析试剂盒
Phos-tag™ Mass Analytical Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ Mass Analytical KitPhos-tag™ 质谱分析试剂盒

用于MALDI-TOF/MS检测,提高检测灵敏度!

  用于质谱分析的试剂套装。

  Phos-tag Mass Analytical Kit 是用于质谱分析的试剂套装,可配套MALDI-TOF/MS使用。可检测磷酸化分子- Phos-tag® 复合物,通常可提高低磷酸化分子的检测灵敏度。


试剂盒内容:

● Phos-tag™ MS-101L  5 mg([C27H29N6O64Zn2]3+ MW:581.4)

● Phos-tag™ MS-101H 5 mg([C27H29N6O68Zn2]3+ MW:589.4)

● Phos-tag™ MS-101N 10 mg([C27H29N6OZn2]3+ MW:584.3)

原理:


Phos-tag™ 质谱分析试剂盒


优点、特色:

● CH3COO- 等价结合在Phos-tag™ MS-101上。

● 在溶液中,不含有阴离子的Phos-tag™ MS-101 带有+3价。

● 检测前需制备1mM 的Phos-tag™ MS-101L,MS-101H或者MS-101N( 溶于水)。

案例、应用:

【使用例子:检测Phos-tag™ – 磷酸化LPA 复合体】


Phos-tag™ 质谱分析试剂盒


由于正电荷增大磷酸化LPA 检测灵敏度上升



Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™ 是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™ Agarose)及质谱分析MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


Phos-tag™ 的基本结构:

Phos-tag™ 质谱分析试剂盒

特点:

与-2价磷酸根离子的亲和性和选择性高于其它阴离子

在pH 5-8的生理环境下生成稳定的复合物

原理:


Phos-tag™ 质谱分析试剂盒

相关应用:


Phos-tag™ 质谱分析试剂盒

相关产品:

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离: SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离: 预制胶中含有50μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测: 代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化: 通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析: 用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:http://phos-tag.jp

Phos-tag™ 质谱分析试剂盒

Phos-tag 第5版说明书

Phos-tag™ 质谱分析试剂盒

Phos-tag系列 ver 5

Q.     Phos-tag™ Mass 用于实验可以使用多少次?

A.     如果每次用量为5μL,至少可以使用1000 次。

Q.     如何选择使用Phos-tag™ MS-101L,Phos-tag™ MS-101H 和Phos-tag™ MS-101N ?

A.     Phos-tag™ 101N 含有自然存在的Zn,101L 与101H 分别含有Zn 的同位素64Zn 和68Zn。

     请参考以下建议:

     摸索条件时使用101N,其中含有多种同位素,结果比较详细;

     鉴定磷酸基团是否存在,使用101L 和101H,这些试剂分别包含64Zn 和68Zn。使用这些试剂检测同一个样品

     时会产生不同的荷质比。

Q.     如果想测定经过Phos-tag™ SDS-PAGE 分离得到的样品,是否必须要在凝胶消化之前去除Phos-tag™?

A.     没有必要。SDS-PAGE 结束之后根据一般的凝胶消化方法进行操作即可。

Q.     能否用于ESI 质谱?

A.     是的,可以使用。请参考下面的文献,这篇报道使用Phos-tag™ MS-101N 进行ESI-MS 分析。在实验过程

     中,使用了中性溶液,若为酸性溶液会导致Phos-tag ™ 分离。

        【参考文献】 Anal. Chem. (2008), 80, 2531-2538 (MS-101N ESI-MS)

【参考文献】


·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.


References on Phos-tag™ Chemistry

  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

  • Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

  • Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

  •  Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

  • Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

  • Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture MoleculeAnalytical Chemistry77, 3979-3985 (2005), K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama

  • Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike

  • Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pHProteomics, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike

  • Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry360, 160-162 (2007), S. Yamada, H. Nakamura, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and Y. Shiro

  • Label-free kinase profiling using phosphate-affinity polyacrylamide gel electrophresisMolecular & Cellular Proteomics, 6, 356-366 (2007), E. Kinoshita-Kikuta, Y. Aoki, E. Kinoshita, and T. Koike

  • A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+.Phos-tag.)

  • Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag MoleculeJournal of Biomolecular Techniques18, 278-286 (2007), T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura

  • A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresisAnalytical Biochemistry378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate- affinity SDS-PAGEProteomics, 8, 2994-3003 (2008), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, S. Yamada, H. Nakamura, Y. Shiro, Y. Aoki, K. Okita, and T. Koike

  • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathwayNature Structural & Molecular Biology15, 1138-1146 (2008), M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge, and M. Takata

  • to Page top

  • Two-dimensional phosphate affinity gel electrophoresis for the analysis of phosphoprotein isotypes Electrophoresis30, 550-559 (2009), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, Y. Aoki, S. Ohie, Y. Mouri, and T. Koike

  • Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leavesBioscience, Biotechnology, and Biochemistry,73, 1293-300 (2009), T. Tanaka, G. Horiuchi, M. Matsuoka, K. Hirano, A. Tokumura, T. Koike, and K. Satouchi

  • A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptidesAnalytical Biochemistry388, 235-241, (2009), K. Takiyama, E. Kinoshita, E. Kinoshita-Kikuta, Y. Fujioka, Y. Kubo, and T. Koike

  • Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysatesAnalytical Biochemistry389, 83-85, (2009), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agaroseProteomics9, 4098- 4101 (2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Ujihara, and T. Koike

  • Separation and detection of large phosphoproteins using Phos-tag SDS-PAGENature Protocols4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

  • A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tagRapid Communications in Mass Spectrometry24, 1075-1084 (2010), J. Morishige, M. Urikura, H. Takagi, K. Hirano, T. Koike, T. Tanaka, and K. Satouchi

  • Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexesClinical Biochemistry43, 302-306 (2010), E. Kinoshita, E. Kinoshita-Kikuta, H. Nakashima, and T. Koike

  • The DNA-binding activity of mouse DNA methyltransferase 1 is ragulated phosphorylation with casein kinase 1σ/εBiochemical Journal427, 489-497 (2010), Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita


产品编号 产品名称 产品规格 产品等级 产品价格
305-93551 Phos-tag™ Mass Analytical Kit 
Phos-tag 质谱分析试剂盒
1 kit

7182-001-Whatman沃特曼硝酸纤维素NC膜0.2um*13mm-硝酸纤维素膜

品牌 其他品牌 货号 7182-001
供货周期 现货 应用领域 医疗/卫生,环保/水工业,生物产业,综合

Whatman沃特曼硝酸纤维素NC膜0.2um*13mm,推荐用于大多数日常应用,这种膜是在严格控制条件下生产。Whatman硝酸纤维素膜确保了非常窄的孔径分布和极低萃取溶出水平,且具有极好的生物相容性,这些都可以让Z终用户受益。1975年,Edwin Southern运用Whatman硝酸纤维素膜发明了举世闻名的Southern Blotting方法而影响至今。

7182-001 Whatman沃特曼硝酸纤维素NC膜0.2um*13mm

推荐用于大多数日常应用,这种膜是在严格控制条件下生产。Whatman硝酸纤维素膜确保了非常窄的孔径分布和极低萃取溶出水平,且具有极好的生物相容性,这些都可以让zui终用户受益。1975年,Edwin Southern运用Whatman硝酸纤维素膜发明了举世闻名的Southern Blotting方法而影响至今。

特征和优点

孔径分布精确能改进表面捕获和分析
提取物水平低,保证样品的完整性。

7182-001 Whatman沃特曼硝酸纤维素NC膜0.2um*13mm应用

样品分离
微生物研究
水溶液过滤

7182-001-Whatman沃特曼硝酸纤维素NC膜0.2um*13mm-硝酸纤维素膜

更高的强度和韧性
大多数膜本质上都很脆而且不容易操作,经常是在装载到过滤器或在使用过程中损坏。Whatman硝酸纤维素膜韧性得到明显增强,能够在拾取、装载和灭菌操作全过程中保持滤膜本身的完整性,经过耐破压力测试和比较,Whatman硝酸纤维素膜是同类滤膜中zui强韧的。
低溶出水平
滤膜溶出水平和过滤或吸附技术的改进一样变得越来越重要。尤其是在药学、免疫学、生物学组织培养和衡量分析应用方面,高溶出水平会导致负面影响。Whatman硝酸纤维素膜的溶出水平一般比其他同种型号的膜低。
孔径精确
Whatman滤膜的一个重要特征就是孔径精确度很高ling先的生产和控制系统可实现精确的窄孔径分布,另外批间差的变化zui小,保持*的实验结果。
增加的温度稳定性
滤膜可以在不失完整的情况下在121摄氏度下进行正常消毒。硝酸纤维素膜有圆片、方片和卷等不同规格。
收缩量减少
过多的收缩在消毒过程中会产生问题,也经常会在消毒后在滤器中发生膜的撕裂,也可能导致流速的降低和整个过滤量的减少。Whatman滤膜在消毒过程中收缩率很低。

过滤膜类型
白色光滑滤膜
这是大多数实验室应用的标准滤膜,用于1.0 μm-12.0 μm大小的颗粒和细胞。过滤后的残留物大多数保留在膜的表面,可以进行沉淀物回收和显微镜观察。
网格滤膜
有网格的滤膜使得颗粒、微生物、菌落的计数变得容易。如需要网格膜,请查询混合纤维素酯膜。

软骨试剂盒

软骨试剂盒
Chondrocyte Culture Kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

软骨试剂盒软骨试剂盒

产品编号

名称

来源

规格

储存

 软骨细胞培养试剂盒该试剂盒用于分析软骨细胞的分化及状态,以及关节相关的药物靶标筛选和软骨再生研究等

 PMC-CHC04-COS

Chondrocyte Culture Kit V-1

Rabbit
(Japanese albino)

1 set

 试剂盒组成

 ●Chondrocyte  (Frozen Cells,  2×106 cells)——1 vial(Liq N2) 
 ●Differentiation Medium (125 mL)——1 bottle (4℃)
 ●Growth Medium (125 mL) ——1 bottle (4℃ )

 PMC-CHCG-COS

Chondrocyte Growth Medium

500 mL

4℃

PMC-CHCM-COS

Chondrocyte Differentiation Medium

500 mL

4℃

 其他

 产品编号

 名称

 应用

 规格

 储存

 KOU-ACB-05S

 Atelocollagen coated  BETA-TCP scaffold
Disc size: Φ3×1 mm

 骨重建研究

(成骨细胞、破骨细胞等细胞培养)成骨相关因子功能研究

 10 PC

 KOU-MIC-00

 Collagen microspheres
Size:100-400 μm,About 3,000,000 particles,Total surface area:about 3,800 cm2/15 ml

 磁珠状去端肽胶原, 

可用于培养成骨细胞等

 15 mL

 2-10℃

 KOU-CL-22

 TypeII collagen

 软骨研究

 10 mL

 2-10℃

 SSK-A1

 SK Keep

 牙体/骨片保存液

 100 mL

 MBG-PMW20-1001

 Mebiol®Gel 3D Thermoreversible Hydrogel

 温敏性水凝胶, 用于3D培养

 10 mL

 RT

产品编号 产品名称 产品规格 产品等级 产品价格
PMC-CHC04-COS Chondrocyte Culture Kit V-1
 软骨细胞培养试剂盒
1 set
PMC-CHCG-COS Chondrocyte Growth Medium
 软骨细胞生长培养基
500mL
PMC-CHCM-COS Chondrocyte Differentiation Medium
 软骨细胞分化培养基
500mL

Fisherbrand inkjet及inkjet Plus载玻片22-042-91722-042-917-赛默飞中国代理商

产品信息
产品名称:
Fisherbrand inkjet及inkjet Plus载玻片22-042-917
产品型号:
22-042-917
Fisherbrand inkjet及inkjet Plus载玻片22-042-91722-042-917 产品特点
  设计用于leica显微系统IP S喷墨打印机配套使用*打印机使用抗化墨水,可直接打印到Superfrost/ColorFrost涂层标签区*适用于组织学,细胞学,血液学,微生物学方向的应用*inkjet Plus载玻片带正电荷标志*磨砂标签区域有多种颜色可选

Fisherbrand inkjet及inkjet Plus载玻片22-042-91722-042-917
产品详细信息:

设计用于leica显微系统IP S喷墨打印机配套使用

*打印机使用抗化墨水,可直接打印到Superfrost/ColorFrost涂层标签区

*适用于组织学,细胞学,血液学,微生物学方向的应用

*inkjet Plus载玻片带正电荷标志

*磨砂标签区域有多种颜色可选

10ml PTFE(铁氟龙)广口瓶日本三博特sanplatec

10ml PTFE(铁氟龙)广口瓶
产品编号: WEB9276 价格: 会员价:0元;市场价:0元 产品特点
使用前请先参考相关耐药性、耐热性数据。
产品规格

本体全高< ?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

40mmH

外径

30mm

瓶口内径

18mm

盖全高

15mmH

盖外径

30mm

材料

确认材料的耐药性 >> 耐药性检索

        10ml PTFE(铁氟龙)广口瓶10ml PTFE(铁氟龙)广口瓶产品特征: 特点:PTFE制的瓶子,耐药品性,耐热性优越。请根据用途选择,内部面是平底。 

Thermo281通用水浴2830281-赛默飞中国代理商

产品信息
产品名称:
Thermo281通用水浴2830
产品型号:
281
Thermo281通用水浴2830281 产品特点
  产品特色 ● 无缝不锈钢内墙、便于清洁 ● 外部覆盖环氧涂层,防腐蚀 ● 标配不锈钢散流架 ● 除 181 和 182 型外,均含不锈钢山形盖 ● 181 和 182 型含聚丙烯山形盖 ● 模拟控制、数字控制可选 ● 8 种尺寸可选,Z低 1.5 L,Z大 43 L ● 过温保护 ● ML 认证(120 V)

Thermo281通用水浴2830281
产品详细信息:

产品特色 

● 无缝不锈钢内墙、便于清洁 

● 外部覆盖环氧涂层,防腐蚀 

● 标配不锈钢散流架 

● 除 181 和 182 型外,均含不锈钢山形盖 

● 181 和 182 型含聚丙烯山形盖 

● 模拟控制、数字控制可选 

● 8 种尺寸可选,zui低 1.5 L,zui大 43 L 

● 过温保护 

● ML 认证(120 V)

7ml PFA圆底容器 (外径×内径×全高mm:22×17×32H)日本三博特sanplatec

7ml PFA圆底容器 (外径×内径×全高mm:22×17×32H)
产品编号: WEB15268 价格: 会员价:0元;市场价:0元 产品特点
/
产品规格

本体尺寸(mm)×外径×内径×高:22Φ×17Φ×32

瓶盖尺寸(mm)×外径×高:27Φ×36

材料

确认材料的耐药性 >> 耐药性检索

        7ml PFA圆底容器 (外径×内径×全高mm:22×17×32H)7ml PFA圆底容器 (外径×内径×全高mm:22×17×32H)产品特征

特点 :瓶子完全由PFA制造 ,耐药品性优越 。金属溶出及少 。作为无金属容 器,适合保管各种分析试料。内部形状为圆形,可以简单取出内容液。 耐热性,耐寒性优越。可在冷冻库冷冻,也可在油浴加热。可可用于广泛的温度领域(-196℃~250℃)。本品为非粘性,适合操作需要剥离或处理高粘度的样品。

 

Bio-Rad伯乐ReadyStrip IPG胶条1632014

Bio-Rad伯乐ReadyStrip IPG胶条1632014 1632016

PG 胶条将 pH 梯度固定在易于操作的支撑条上,从而简化了*维分离。 ReadyStrip™ IPG 胶条是使用高纯度 IPG 单体灌制而成的,并且已经过充分的质量和性能测试,可提供凝胶到凝胶的可重复性。 ReadyStrip IPG 胶条提供广泛的 pH 梯度选择和 7 到 24 cm 的胶条长度选择,适合 Bio-Rad 垂直电泳槽和凝胶。

设计特点

  • 严格的凝胶长度公差为 ±2 mm,以便实现*的 pI 分离
  • 阳极和 pH 范围清楚地印在每个胶条上,24 cm 的胶条上带有条形码
  • 两端的衬背长度*,可在第二维凝胶上自行居中而无需裁切

梯度选择

  • 标准宽范围 PH 梯度,可在单块凝胶上提供总蛋白的最大分辨率
  • 使用窄范围梯度时,在整个 PH 3–10 范围内,每个 pH 单位对应的凝胶长度 (cm) 更大,从而获得更高分辨率
  • 最终分辨率的微幅梯度 — 放大相关区域或精细研究整个蛋白质组;精心设计的胶条可进行充分的重叠,以允许点匹配,同时限制冗余数据的范围
  • 综合产品通过重叠 pH 范围增加*维的解析能力

相对聚焦功率

相对聚焦功率表示在使用不同长度或 pH 范围的 IPG 胶条时,在*维中预期获得的增强的分辨率。 会给 7 cm pH 3–10 IPG 胶条任意指定一个基准聚焦功率 1.0,以计算其他胶条的相对聚焦功率。

窄范围胶条

窄范围胶条可提高分辨率。三个重叠的窄范围胶条可以大幅度地扩展区域,以便进行分析。

微幅胶条

微幅 IPG 胶条可提供很高 IPG 胶条分辨率。 微幅胶条覆盖最小为 1 个 pH 单位的范围。 它们非常适用于分离同一蛋白质的不同异构体。

Bio-Rad伯乐ReadyStrip IPG胶条1632014 1632016

1632000 ReadyStrip IPG pH 3-10, 12 x 7 cm 预制胶条,pH3-10,7cm,12根
1632001 ReadyStrip IPG pH 4-7, 12 x 7 cm 预制胶条,pH4-7,7cm,12根
1632002 ReadyStrip IPG pH 3-10 NL 12 x 7cm 预制胶条,pH3-10NL,7cm,12根
1632003 ReadyStrip IPG pH 3-6, 12 x 7 cm 预制胶条,pH3-6,7cm,12根
1632004 ReadyStrip IPG pH 5-8, 12 x 7 cm 预制胶条,pH5-8,7cm,12根
1632005 ReadyStrip IPG pH 7-10, 12 x 7 cm 预制胶条,pH7-10,7cm,12根
1632007 ReadyStrip IPG pH 3-10, 12 x 17 cm 预制胶条,pH3-10,17cm,12根
1632008 ReadyStrip IPG pH 4-7, 12 x 17 cm 预制胶条,pH4-7,17cm,12根
1632009 ReadyStrip IPG pH 3-10 NL 12 x 17cm 预制胶条,pH3-10NL,17cm,12根
1632010 ReadyStrip IPG pH 3-6, 12 x 17 cm 预制胶条,pH3-6,17cm,12根
1632011 ReadyStrip IPG pH 5-8, 12 x 17 cm 预制胶条,pH5-8,17cm,12根
1632012 ReadyStrip IPG pH 7-10, 12 x 17 cm 预制胶条,pH7-10,17cm,12根
1632014 ReadyStrip IPG pH 3-10, 12 x 11 cm 预制胶条,pH3-10,11cm,12根
1632015 ReadyStrip IPG pH 4-7, 12 x 11 cm 预制胶条,pH4-7,11cm,12根
1632016 ReadyStrip IPG pH 3-10 NL 12 x 11cm 预制胶条,pH3-10NL,11cm,12根
1632017 ReadyStrip IPG pH 3-6, 12 x 11 cm 预制胶条,pH3-6,11cm,12根
1632018 ReadyStrip IPG pH 5-8, 12 x 11 cm 预制胶条,pH5-8,11cm,12根
1632019 ReadyStrip IPG pH 7-10, 12 x 11 cm 预制胶条,pH7-10,11cm,12根
1632032 ReadyStrip IPG pH 3-10, 12 x 18 cm 预制胶条,pH3-10,18cm,12根
1632033 ReadyStrip IPG pH 3-10 NL 12 x 18cm 预制胶条,pH3-10NL,18cm,12根
1632034 ReadyStrip IPG pH 4-7, 12 x 18 cm 预制胶条,pH4-7,18cm,12根
1632035 ReadyStrip IPG pH 3-6, 12 x 18 cm 预制胶条,pH3-6,18cm,12根
1632036 ReadyStrip IPG pH 5-8, 12 x 18 cm 预制胶条,pH5-8,18cm,12根
1632037 ReadyStrip IPG pH 7-10, 12 x 18 cm 预制胶条,pH7-10,18cm,12根
1632042 ReadyStrip IPG pH 3-10, 12 x 24 cm 预制胶条,pH3-10,24cm,12根
1632043 ReadyStrip IPG pH 3-10 NL 12 x 24cm 预制胶条,pH3-10NL,24cm,12根
1632044 ReadyStrip IPG pH 4-7, 12 x 24 cm 预制胶条,pH4-7,24cm,12根
1632045 ReadyStrip IPG pH 3-6, 12 x 24 cm 预制胶条,pH3-6,24cm,12根
1632046 ReadyStrip IPG pH 5-8, 12 x 24 cm 预制胶条,pH5-8,24cm,12根
1632047 ReadyStrip IPG pH 7-10, 12 x 24 cm 预制胶条,pH7-10,24cm,12根

经济型刻度量筒, 刻度量筒 PP量筒 塑料量筒 供应

  • 产品描述

精确度符合ISO 6706 B级标准

· 无凹液面,不会干扰读数,确保测量精准

· 极佳的耐化学性且防碎裂

· 磨具刻度或蓝色印刷刻度可供选择

· 宽大的倾倒口设计,便于分液

· 在20℃条件下进行校准

带模具刻度 带印刷刻度 容量(mL) 分刻度(mL) 公差(±毫升) 包装
84205-1110
84205-1125
84205-1150
84205-1141
84205-1152
84205-1171
84205-1181
84205-1210
84205-1225
84205-1250
84205-1241
84205-1252
84205-1271
84205-1281
10
25
50
100
250
500
1000
0.2
0.5
1.0
1.0
2.0
5.0
10.0
0.2
0.34
0.5
1.0
2.0
4.0
6.0

2只/袋,24只/箱

2只/袋,24只/箱

2只/袋,24只/箱

1只/袋,12只/箱

1只/袋,12只/箱

1只/袋,8只/箱

1只/袋,6只/箱

Bio-Rad伯乐Chelex 100 Resin树脂1421253

Bio-Rad伯乐Chelex 100 Resin树脂1421253

50g, molecular biology grade cation exchange resin, sodium form, 1% crosslinkage, 200–400 dry mesh size, 75–150 µm wet bead size, ~3,500 MW limit.                       

Chelex 100 树脂 含有成对的二乙酸亚胺离子与聚苯乙烯二乙烯基苯载体结合。它们是独特的螯合树脂,可以高选择性地结合多价阳离子,并可用于去除样品和缓冲液中的金属离子。

1421253 离子交换树脂,Chelex100,200-400目,MB,NA,50G
1422822 离子交换树脂,Chelex100,50-100目,钠,500g
1422825 离子交换树脂,Chelex100,100-200目,铁,100 g
1422832 离子交换树脂,Chelex100,100-200目,钠,500g
1422842 离子交换树脂,Chelex100,200-400目,钠,500g

Bio-Rad伯乐Chelex 100 Resin树脂1421253

Sterlitech 0.8um镀金共聚酯滤膜1270008

Sterlitech 0.8um镀金共聚酯滤膜1270008

POLYCARBONATE (PCTG) GOLD-COATED MEMBRANE FILTERS, 0.8 MICRON, 40/20NM COATING, 47MM, 10/PK。PCTG过滤膜镀金40/20nm涂层,47mm直径,0.8um孔径,10片/盒。

1270008:Polycarbonate (PCTG) Gold-Coated Membrane Filters, 0.8um孔径, 40/20nm Coating, 47mm直径, 10片/盒

1270007:Polycarbonate (PCTG) Gold-Coated Membrane Filters, 0.8um孔径, 40/20nm Coating, 25mm直径, 10片/盒

1270006:Polycarbonate (PCTG) Gold-Coated Membrane Filters, 0.8um孔径, 40/20nm Coating, 13mm直径, 10片/盒

1270004:Polycarbonate (PCTG) Gold-Coated Membrane Filters, 0.4um孔径, 40/20nm Coating, 25mm直径, 10片/盒

1270003:Polycarbonate (PCTG) Gold-Coated Membrane Filters, 0.4um孔径, 40/20nm Coating, 13mm直径, 10片/盒

1270001:Polycarbonate (PCTG) Gold-Coated Track-Etched Membrane Filter, 0.4um孔径, 40/20nm Coating, 210 x 297mm, 1片/盒

1270005:Polycarbonate (PCTG) Gold-Coated Membrane Filters, 0.4um孔径, 40/20nm Coating, 47mm直径, 10片/盒

1270002:Polycarbonate (PCTG) Gold-Coated Track-Etched Membrane Filter, 0.8um孔径, 40/20nm Coating, 210 x 297mm, 1片/盒

Sterlitech 0.8um镀金共聚酯滤膜1270008

1.2um孔径142mm混合纤维素过滤膜RAWP14250

Merck Millipore默克密理博1.2um孔径142mm混合纤维素过滤膜RAWP14250

这种142 mm MF-Millipore滤膜由孔径为1.2 um的混合纤维素滤膜构成。MF-Millipore滤膜由纤维素醋酸酯和纤维素硝酸酯的生物惰性混合物制成,用于分析和研究应用。

描述
产品目录编号 RAWP14250
商名
  • MF-Millipore
描述 MF-Millipore滤膜,混合纤维素酯滤膜
背景信息 Biologically inert mixtures of cellulose acetate and cellulose nitrate have made MF-Millipore™ membrane filters one of the most widely used membranes in analytical and research applications. 

MF-Millipore™ filters without Triton® surfactant contain minimum amounts of wetting agent and have a lower water extractable content than standard MF-Millipore™ filters.

Features & Benefits:
– Versatile filter for biological and environmental monitoring applications 
– Available in a range of pore sizes, colored black or white, with or without a gridded surface 
– Compatible with ethylene oxide, gamma irradiation, and autoclave sterilization methods

产品信息
过滤器代码 RAWP
过滤器颜色 白色
工作温度 75 °C
应用
应用 这种142 mm MF-Millipore滤膜由孔径为1.2 um的混合纤维素滤膜构成。MF-Millipore滤膜由纤维素醋酸酯和纤维素硝酸酯的生物惰性混合物制成,用于分析和研究应用。
生物信息
媒质 MF-Millipore
可湿润性 亲水性
理化信息
折射系数 1.512
孔径 1.2 µm
空气流量 20 L/min x cm²
23°C时的泡点 ≥0.76 bar,含水空气
重量分析的提取物(%) 5%
孔隙率% 82%
水流量
  • 270 mL/min x cm²
尺寸
过滤器表面 平纹
厚度 150 µm
过滤器直径 (⌀) 142 mm
材料信息
化学
  • 混合纤维素酯(MCE)
包装信息
数量 亲水性,1.2 µm,142 mm,白色,平纹,50

Merck Millipore默克密理博1.2um孔径142mm混合纤维素过滤膜RAWP14250

过滤系统, 过滤系统 供应

  • 产品描述

滤膜是过滤器的重要组成部件,它实质上微孔塑料膜,因具有特定孔径,所以可以截留比其膜孔径大的颗粒或者微生物。
世泰过滤系统使用的所有膜材料均为医用级材质,共5种滤膜,膜孔径有0.2µm(灭菌级)和0.45µm(净化级)两种,Gamma灭菌,无RNA酶、DNA酶和热源。


真空过滤系统

专业设计用于真空抽滤液体。

· Gamma灭菌,无RNA酶、DNA酶和热源

· 聚偏氟乙烯(PVDF)、聚醚砜(PES)、混合纤维素酯(MCE)和尼龙(Nylon)四种滤膜可选

产品编号 膜孔径(mm) 容量 (mL) 直径(mm) 高度(mm)
PVDF PES MCE Nylon

82307-1201

82307-1202

82307-1203

82307-1204

82307-1301

82307-1302

82307-1303

82307-1304

2307-3201

2307-3202

2307-3204

2307-3203

2307-3301

2307-3302

2307-3304

2307-3303

82307-2201

82307-2202

82307-2203

82307-2204

82307-2301

82307-2302

82307-2303

82307-2304

82307-4201

82307-4202

82307-4203

82307-4204

82307-4301

82307-4302

82307-4303

82307-4304

0.22

0.22

0.22

0.22

0.45

0.45

0.45

0.45

150

250

500

1000

150

250

1000

500

50

50

91

75

50

50

91

75

156

200

245

310

156

200

245

310

真空过滤装置

建议将试剂瓶用做过滤装置接收瓶

产品编号 膜孔径(mm) 容量(mL) 直径 (mm) 高度(mm)
PVDF PES MCE Nylon

82307-1205

82307-1206

82307-1207

82307-1208

82307-1305

82307-1306

82307-1307

82307-1308

2307-3205

2307-3206

2307-3208

2307-3207

2307-3305

2307-3306

2307-3308

2307-3307

82307-2205

82307-2206

82307-2207

82307-2208

82307-2305

82307-2306

82307-2307

82307-2308

2307-4205

2307-4206

2307-4208

2307-4207

2307-4305

2307-4306

2307-4308

2307-4307

0.22

0.22

0.22

0.22

0.45

0.45

0.45

0.45

150

250

500

1000

150

250

1000

500

50

50

91

75

50

50

91

75

156

200

245

310

156

200

245

310


无菌接收瓶

产品编号 容量(ml) 包装

82307-5015

82307-5025

82307-5100

82307-5050

150

250

1000

500

24只/箱

24只/箱

12只/箱

12只/箱